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Fig. 2.1
Portrait of Galileo. ©Bettmann/Corbis/
Magma.

Fig. 2.2
Cathedral at Pisa. The thin vertical wire
indicates a hanging chandelier.

Pendulums somewhat
simple

There are many kinds of pendulums. In this chapter, however, we intro-
duce a simplified model; the small amplitude, linearized pendulum. For the
present, we ignore friction and in doing so obviate the need for energizing
the pendulum through some forcing mechanism. Our initial discussion will
therefore assume that the pendulum’s swing is relatively small; and this
approximation allows us to linearize the equations and readily determine
the motion through solution of simplified model equations. We begin with
a little history.

2.1 The beginning

Probably no one knows when pendulums first impinged upon the human
consciousness. Undoubtedly they were objects of interest and decoration
after humankind learnt to attend routinely to more basic needs. We often
associate the first scientific observations of the pendulum with Galileo
Galilei (1564-1642; Fig. 2.1).

According to the usual story (perhaps apocryphal), Galileo, in the
cathedral at Pisa, Fig. 2.2 observed a lamplighter push one of the swaying
pendular chandeliers. His earliest biographer Viviani suggests that Galileo
then timed the swings with his pulse and concluded that, even as the
amplitude of the swings diminished, the time of each swing was constant.
This is the origin of Galileo’s apparent discovery of the approximate iso-
chronism of the pendulum’s motion. According to Viviani these obser-
vations were made in 1583, but the Galileo scholar Stillman Drake (Drake
1978) tells us that guides at the cathedral refer visitors to a certain lamp
which they describe as “Galileo’s lamp,” a lamp that was not actually
installed until late in 1587. However, there were undoubtedly earlier
swaying lamps. Drake surmises that Galileo actually came to the insight
about isochronism in connection with his father’s musical instruments and
then later, perhaps 1588, associated isochronism with his earlier pendulum
observations in the cathedral. However, Galileo did make systematic
observations of pendulums in 1602. These observations confirmed only
approximately his earlier conclusion of isochronism of swings of differing
amplitude. Erlichson (1999) has argued that, despite the nontrivial
empirical evidence to the contrary, Galileo clung to his earlier conclusion,



The simple pendulum

in part, because he believed that the universe had been ordered so that
motion would be simple and that there was “no reason” for the longer path
to take a longer time than the shorter path. While Galileo’s most famous
conclusion about the pendulum has only partial legitimacy, its importance
resides (a) in it being the first known scientific deduction about the
pendulum, and (b) in the fact that the insight of approximate isochronism
is part of the opus of a very famous seminal character in the history of
physical science. In these circumstances, the pendulum begins its-history as
a significant model in physical science and, as we will see, continues to
justify its importance in science and technology during the succeeding
centuries.

2.2 The simple pendulum

The simple pendulum is an idealization of a real pendulum. It consists of a
point mass, m, attached to an infinitely light rigid rod of length / that is
itself attached to a frictionless pivot point. See Fig. 2.3. If displaced from its
vertical equilibrium position, this idealized pendulum will oscillate with a
constant amplitude forever. There is no damping of the motion from
friction at the pivot or from air molecules impinging on the rod. Newton’s
second law, mass times acceleration equals force, provides the equation of
motion:
2

ml Z—tf = —mgsin g, 2.1
where 0 is the angular displacement of the pendulum from the vertical
position and g is the acceleration due to gravity. Equation (2.1) may be
simplified if we assume that amplitude of oscillation is small and that
sin @ = §. We use this linearization approximation throughout this chapter.
The modified equation of motion is

o g
— —_ o ¥ -2
p7 + 7 =0 (2.2)

The solution to Eq. (2.2) may be written as
8 = 0y sin (wt + ¢y), (2.3)

where 6 is the angular amplitude of the swing,

w= % 2.4)

is the angular frequency, and ¢, is the initial phase angle whose value
depends on how the pendulum was started—its initial conditions. The
period of the motion, in this linearized approximation, is given by

T= 2w\ﬁ, 2.5)
g

Fig. 2.3
The simple pendulum with a point
mass bob.
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Pendulums somewhat simple

which is a constant for a given pendulum, and therefore lends support to
Galileo’s conclusion of isochronism.

The dependence of the period on the geometry of the pendulum and the
strength of gravity has very interesting consequences which we will explore.
But for the moment we consider further some of the mathematical rela-
tionships. Figure 2.4 shows the angular displacement 6 = 6 sin (wt + ¢y)
and the angular velocity 8 = fyw cos (wt + ¢y), respectively, as functions of
time. We refer to such graphs as time series. The displacement and velocity
are 90 degrees out of phase with each other and therefore when one
quantity has a maximum absolute value the other quantity is zero. For
example, at the bottom of its motion the pendulum has no angular dis-
placement yet its velocity is greatest.

The relationship between angle and velocity may be represented
graphically with a phase plane diagram. In Fig. 2.5 angle is plotted on the
horizontal axis and angular velocity is plotted on the vertical axis. As time
goes on, a point on the graph travels around the elliptically shaped curve.
In effect, the equations for angle and angular velocity are considered to
be parametric equations for which the parameter is proportional to time.
Then the orbit of the phase trajectory is the ellipse

62 @

CANTR =0

Since the motion has no friction nor any forcing, energy is conserved on
this phase trajectory. Therefore the sum of the kinetic and potential
energies at any time can be shown to be constant as follows. In the line-
arized approximation,

I 5a 1

and, using Eqgs. (2.3) and (2.4), we find that

E= mglh? 2.7

1
1

2mg1002, 298

E=
which is the energy at maximum displacement.

The phase plane is a useful tool for the display of the dynamical prop-
erties of many physical systems. The linearized pendulum is probably one
of the simplest such systems but even here the phase plane graphic
is helpful. For example, Eq. (2.6) shows that the axes of the ellipse in
Fig. 2.5 are determined by the amplitude and therefore the energy of
the motion. A pendulum of smaller energy than that shown would exhibit
an ellipse that sits inside the ellipse of the pendulum of higher energy.
See Fig. 2.6. Furthermore the two ellipses would never intersect because
such intersection implies that a pendulum can jump from one energy to
another without the agency of additional energy input. This result leads
to a more general conclusion called the no-crossing theorem; namely, that
orbits in phase space never cross. See Fig. 2.7.
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Why should this be so? Every orbit is the result of a deterministic
equation of motion. Determinism implies that the orbit is well defined and
that there would be no circumstance in which a well determined particle
would arrive at some sort of ambiguous junction point where its path
would be in doubt. (Later in the book we will see apparent crossing points
but these false crossings are the result of the system arriving at the same
phase coordinates at different times.)

We introduce one last result about orbits in the phase plane. In Fig. 2.6
there are phase trajectories for two pendulums of different energy. Now
think of a large collection of pendulums with energies that are between the
two trajectories such that they have very similar, but not identical, angles
and velocities. This cluster of pendulums is represented by a set of many
phase points such that they appear in the diagram as an approximately solid
block between the original two trajectories. As the group of pendulums
executes their individual motions the set of phase points will move between
the two ellipses in such a way that the area defined by the boundaries of the
set of points is preserved. This preservation of phase area, known as
Liouville’s theorem (after Joseph Liouville (1809-1882)) is a consequence
of the conservation of energy property for each pendulum. In the next
chapter we will demonstrate how such areas decrease when energy is lost in
the pendulums. But for now let us show how phase area conservation is
true for the very simple case when 6 = 1, ¢ = 0, and w = 1. In this special
case, the ellipses becomes circles since the axes are now equal. See Fig. 2.8.
A block of points between the circles is bounded by a small polar angle
interval Ac, in the phase space, that is proportional to time. Each point in
this block rotates at the same rate as the motion of its corresponding
pendulum progresses. Therefore, after a certain time, all points in the
original block have rotated, by the same polar angle, to new positions
again bounded by the two circles. Clearly, the size of the block has not
changed, as we predicted.

The motion of the pendulum is an obvious demonstration of the
alternating transformation of kinetic energy into potential energy and
the reverse. This phenomenon is ubiquitous in physical systems and is
known as resonance. The pendulum resonates between the two states
(Miles 1988b). Electrical circuits in televisions and other electronic devices
resonate. The terms resonate and resonance may also refer to a sympathy
between two or more physical systems, but for now we simply think of
resonance as the periodic swapping of energy between two possible
formats.

We conclude this section with the introduction of one more mathe-
matical device. Its use for the simple pendulum is hardly necessary but it will
be increasingly important for other parts of the book. Almost two hundred
years ago, the French mathematician Jean Baptiste Fourier (1768—1830)
showed that periodic motion, whether that of a simple sine wave like our
pendulum, or more complex forms such as the triangular wave that
characterizes the horizontal sweep on a television tube, are simple linear
sums of sine and cosine waves now known as Fourier Series. That is, let £ (£)

1

Fig. 2.7

If two orbits in phase space intersect,
then it is uncertain which orbit takes
which path from the intersection. This
uncertainty violates the deterministic
basis of classical mechanics.

Fig. 2.8

Preservation of area for conservative
systems. A block of phase points keeps
its same area as time advances.
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be a periodic function such that f(£) = f(¢ + (27)/wo), where T = (2m)/wo
is the basic periodicity of the motion. Then Fourier’s theorem says that this
function can be expanded as

co oQ
f(H) = Z b, cos nwyt + Z ¢, Sin nwot + d, (2.9)
n=1 n=1
where the coefficients b, and ¢, give the strength of the respective cosine
and sine components of the function and d is constant. The coefficients
are determined by integrating f(¢) over the fundamental period, 7. The
appropriate formulas are

1 T/2 1 T/2
d=— fHdt, b,=— f(¢) cos nwyt dt,
T) 1 T) 112 510
L T (2.10)
Cn ==, f(©) sin nwyt dt.
TJ 11

These Fourier coefficients are sometimes portrayed crudely on stereo
equipment as dancing bars in a dynamic bar chart that is meant to portray
the strength of the music in various frequency bands.

The use of complex numbers allows Fourier series to be represented
more compactly. Then Egs. (2.9) and (2.10) become

m/wo

f(He M0t dy.

n=o0
; wo
f() = Z ape™, where a, =3

n=-00 —fwo

(2.11)

Example 1 Consider the time series known as the “sawtooth,” f(t) =t when
~T < t <, with the pattern repeated every period, T. Using Eq. (2.11) it
can be shown that

a, =0 forn=0,
—_1 — 7

Gy = g for n = odd integer, and
— =1 — :

n = 5 JOT 1= even integer.

Through substitution and appropriate algebraic manipulation we obtain
the final result:

. 1., 1.
fH)=— smw,,z—zsm2wot+§sm3wot+--- . (2.12)

2

wo
The original function and the first three frequency components are shown in
Figs. 2.9 and 2.10.

The time variation of the motion of the linearized version of the simple
pendulum is just that of a single sine or cosine wave and therefore one
frequency, the resonant frequency wy is present in that motion. Obviously,
the machinery of the Fourier series is unnecessary to deduce that result.
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However, we now have it available as a tool for more complex periodic
phenomena.

Fourier, like other contemporary French mathematicians, made his
contribution to mathematics during a turbulent period of French history.
He was active in politics and as a student during the “Terror” was arrested
although soon released. Later when Napoleon went to Egypt, Fourier
accompanied the expedition and coauthored a massive work on every
possible detail of Egyptian life, Description de I'Egypt. This is multivolume
work included nine volumes of text and twelve volumes of illustrations.
During that same campaign, one of Napoleon’s engineers uncovered the
Rosetta Stone, so-named for being found near the Rosetta branch of the
Nile river in 1799. The significance of this find was that it led to an
understanding of ancient Egyptian Hieroglyphics. The stone, was inscri-
bed with the same text in three different languages, Greek, demotic
Egyptian, and Hieroglyphics. Only Greek was understood, but the size and
the juxtaposition of the texts allowed for the eventual understanding of
Hieroglyphics and the ability to learn much about ancient Egypt. In 1801,
the victorious British, realizing the significance of the Rosetta stone, took it
to the British Museum in London where it remains on display and is a
popular artifact. Much later, the writings from the Rosetta Stone become
the basis for translating the hieroglyphics on the Rhind Papyrus and the
Golenischev Papyrus; these two papyri provide much of our knowledge of
early Egyptian mathematics. The French Egyptologist Jean Champollion
(1790-1832) who did much of the work in the translation of Hieroglyphics
is said to have actually met Fourier when the former was only 11 years old,
in 1801. Fourier had returned from Egypt with some papyri and tablets
which he showed to the boy. Fourier explained that no one could read
them. Apparently Champollion replied that he would read them when he
was older—a prediction that he later fulfilled during his brilliant career of
scholarship (Burton 1999). After his Egyptian adventures, Fourier con-
centrated on his mathematical researches. His 1807 paper on the idea that
functions could be expanded in trigonometric series was not well received
by the Academy of Sciences of Paris because his presentation was not
considered sufficiently rigorous and because of some professional jealousy
on the part of other Academicians. But eventually Fourier was accepted as
a first rate mathematician and, in later life, acted a friend and mentor to a
new generation of mathematicians (Boyer and Merzbach 1991).

We have now developed the basic equations for the linearized,
undamped, undriven, very simple harmonic pendulum. There are an
amazing number of applications of even this simple model. Let us review
some of them.

2.3 Some analogs of the linearized pendulum
2.3.1 The spring

The linearized pendulum belongs to a class of systems known as harmonic
oscillators. Probably the most well known realization of a harmonic

13
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Fig. 2.11

Slope: k

A mass hanging from a spring, The
graph shows the dependence of the
extension of the spring on the force
(weight). The linear relationship is
known as “Hooke’s law.”
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Fig. 2.12

Radius

A typical Lennard-Jones potential curve
that can effectively model, for example,
intermolecular interactions. For this
illustration, a=b=1.

Pendulums somewhat simple

oscillator is that of a mass suspended from a spring whose restoring force
is proportional to its stretch. That is

Flrestoring = —kx, (2.13)

where k is the spring constant and rate at which the spring’s response
increases with stretch, x. This force law was discovered by Robert Hooke in
1660. The equation of motion

dz
d2

is identical in form to that of the linearized pendulum and therefore its
solution has corresponding properties: single frequency periodic motion,
resonance, energy conservation and so forth. A schematic drawing of the
spring and a graph of its force law are shown in Fig. 2.11.

The functional dependence of the spring force (Eq. (2.13)) can be viewed
more generally. Consider any force law that is derived from a smooth
potential energy V(x); thatis F(x) = —dV/dx. The potential energy may be
expanded in a power series about some arbitrary position x, which, for
simplicity, we will take as xo = 0. Then the series becomes

+kx = (2.14)

V(x) = V(0) + V’(O)x-l— V" (0)x2 + — V’”(O)x £- (2.15)

The first term on the right side is constant and, as the reference point of a
potential energy, is typically arbitrary and may be set equal to zero. The
second, linear, term contains ¥”/(0) which is the negative of the force at the
reference point. Since this reference point is, again typically, chosen to be a -
point of stable equilibrium where the forces are zero, this second term also
vanishes. For the spring, this would be the point where the mass attached
to the spring hangs when it is not in motion. Thus, the first nonvanishing
term in the series is the quadratic term %V” (0)x? and comparison of it with
the spring’s restoring force (Eq. 2.13) leads to the identification

k = V"(0). (2.16)

~

The spring constant is the second derivative of any smooth potential.

Example 2 The Lennard-Jones potential energy is often used to describe
the electrostatic potential energy between two atoms in a molecule or between
two molecules. Its functional form is displayed in Fig. 2.12 and is given by the
equation

a b
V(r):rﬁ_r_ﬁ’ 2.17)

where a and b are constants appropriate to the particular molecule. The
positive term describes the repulsion of the atoms when they are too close and
the negative term describes the attraction if the atoms stray too far from each
other. Hence, the two terms balance at a stable equilibrium point as shown in
the figure, roq = (2") . The second derivative of the potential energy may
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be evaluated at req to yield the spring constant of the equivalent harmonic

oscillator,
182 [ b\'?
" e —
Vi(req) = - <2a> k. (2.18)

Knowledge of the molecular bond length provides req and observation of the
vibrational spectrum of the molecule will yield avalue for the spring constant k.
With just these two pieces of information, the parameters, a and b of the
Lennard-Jones potential energy may be determined.

The linearized pendulum is therefore equivalent to the spring in that they
both are simple harmonic oscillators each with a single frequency and
therefore a single spectral component. Occasionally we will refer to a
pendulum’s equivalent oscillator or equivalent spring, and by this ter-
minology we will mean the linearized version of that pendulum.

2.3.2 Resonant electrical circuit
We say that a function f(#) or operator L(x) is linear if

L(x +y) = L(x) + L(y)

L(ax) = aL(x). 19

Examples of linear operators include the derivative and the integral. But
functions such as sin x or x* are nonlinear. Because linear models are
relatively simple, physics and engineering often employ linear mathemat-
ics, usually with great effectiveness. Passive electrical circuits, consisting of
resistors, capacitors, and inductors are realistically modeled with linear
differential equations. A circuit with a single inductor L and capacitor C, is
shown in Fig. 2.13. The sum of the voltages measured across each element
of a circuit is equal to the voltage provided to a circuit from some external
source. In this case, the external voltage is zero and therefore the sum of the
voltages across the elements in the circuit is described by the linear dif-
ferential equation
d’q 1

where g is the electrical charge on the capacitor. The form of Eq. (2.20) is
exactly that of the linearized pendulum and therefore a typical solution is

q = qo sin(wt + @), (2.21)
where the resonant frequency depends on the circuit elements:
W= ! (2.22)
- VLC '

The charge g plays a role analogous to the pendulum’s angular displace-
ment § and the current i = dg/dt in the circuit is analogous to the pendu-

lum’s angular velocity, df/dt. All the same considerations, about themotion

in phase space, resonance, and energy conservation, that previously held

15

Fig. 2.13
A simple LC (inductor and capacitor)
circuit.




16

Pendulums somewhat simple

for the linearized pendulum, also apply for this simple electrical circuit. In a
(¢, /) phase plane, the point moves in an elliptical curve around the origin.
The charge and current oscillate out of phase with each other. The capa-
citor alternately fills with positive and negative charge. The voltage across
the inductor is always balanced by the voltage across the capacitor such
that the total voltage across the circuit always adds to zero as expressed by
Eq. (2.20). As with the spring, we will return to this electrical analog with
additional complexity. For now, we turn to some applications and com-
plexities of the linearized pendulum.

2.3.3 The pendulum and the earth

From ancient times thinkers have speculated about, theorized upon,
calculated, and measured the physical properties of the earth (Bullen
1975). About 900Bc, the Greek poet Homer suggested that the earth
was a convex dish surrounded by the Oceanus stream. The notion that
the earth was spherical seems to have made its first appearance in Greece
at the time of Anaximander (610—5478c). Aristotle, the universalist thin-
ker, quoted contemporary mathematicians in suggesting that the
circumference of the earth was about 400,000 stadia—one stadium being
about 600 Greek feet. Mensuration was not a precise science at the time
and the unit of the stadium has been variously estimated as 178.6 meters
(olympic stadium), 198.4 m (Babylonian—Persian), 186 m (Italian) or
212.6 m (Phoenician—-Egyptian). Using any of these conversion factors
gives an estimate that is about twice the present measurement of the
earth’s circumference, 4.0086 x 10* km. Later Greek thinkers somewhat
refined the earlier values. Eratosthenes (276—194Bc), Hipparchus
(190-1258c), Posidonius (135-518c), and Claudius Ptolemy (Ap100-161)
all worked on the problem. However the Ptolemaic result was too low. It
is rumored that a low estimate of the distance to India, based on the
Ptolemy’s result, gave undue encouragement to Christopher Columbus
1500 years later.

In China the astronomer monk Yi-Hsing (aAD683-727) had a large
group of assistants measure the lengths of shadows cast by the sun and
the altitudes of the pole star on the solstice and equinox days at thirteen
different locations in ‘China. He then calculated the length L of a degree
of meridian arc (earth’s circumference/360) as 351.27 li (a unit of the Tang
Dynasty) which, with present day conversion, is about 132 km, an estimate
that is almost 20% too high.

The pendulum clock, invented by the Dutch physicist and astronomer
Christiaan Huygens (1629-1695) and presented on Christmas day, 1657,
provided a powerful tool for measurement of the earth’s gravitational field,
shape, and density. The daily rotation of the earth was, by then, an.
accepted fact and Huygens, in 1673, provided a theory of centrifugal
motion that required the effective gravitational field at the equator to be
less than that at the poles. Furthermore, the centrifugal effect should
also have the effect of fattening the earth at the equator, thereby further

l .
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weakening gravity at the surface near the equator. In 1687 Newton
published his universal law of gravity in the Principia. 1t is the existence
of the relationship between gravity and the length of the pendulum
(Eq. (2.5)), established through the work of Galileo and Huygens, that
makes the pendulum a useful tool for the measurement of the gravitational
field and therefore a tool to infer the earth’s shape and density. The first
recorded use of the pendulum in this context is usually attributed to the
measurements of Jean Richer, the French astronomer, made in 1672 .
Richer (1630-1696) found that a pendulum clock beating out seconds in
Paris at latitude 49° North lost about 2(1/2) minutes per day near the
equator in Cayenne at 5° North and concluded that Cayenne was further
from the center of the earth than was Paris. Newton, on hearing of this
result ten years later by accident at a meeting of the Royal Society, used it
to refine his theory of the earth’s oblateness (Bullen 1975). However,
Richer’s result also helped lead to the eventual demise of the idea of using a
pendulum clock as a reliable timing standard for the measurement of
longitude (Matthews 2000).

A clever bit of theory by Pierre Bougeur (1698-1758), a French pro-
fessor of hydrography and mathematics, allowed the pendulum to be an
instrument for estimating the earth’s density, o (Bouguer 1749). In 1735
Bouguer was sent, by the French Academy of Sciences, to Peru, to measure
the length of a meridian arc, L near the equator. (A variety of such mea-
surements at different latitudes would help to determine the earth’s oblate-
ness.) But while in Peru he made measurements of the oscillations of a
pendulum, which in Paris beat out seconds whereas in Quito, (latitude
0.25° South) the period was different. His original memoir is a little con-
fusing as to whether he maintained a constant length pendulum or whether,
as his data suggests, he modified the length of the pendulum to keep time
with his pendulum clock that he adjusted daily. At any rate, he used the
pendulum to measure the gravitational field. But more than this he made
measurements of the gravitational field close to sea level and then on top of
the Cordilleras mountain range. In this way Bouguer was able to estimate
the relative size of the mean density of the earth.

In order to appreciate the cleverness of Bouguer’s method, we derive his
result. Consider the schematic diagram of the earth with the height
increment (the mountain range) shown in Fig. 2.14. The acceleration due to
gravity at the surface of the earth is readily shown to be

_GMp 4

g0 Z —3 nGoa, (2.23)

where a is the earth’s radius, o is the mean density, and G is the universal
gravitational constant. Now consider the acceleration due to gravity on the
mountain range. There are two effects. First, the gravitational field is
reduced by the fact that the field point is further from the center of the
earth, and second, the field is enhanced by the gravitational pull of the
mountain range. The first effect is found through a simple ratio using
Newton’s law of gravity, but the second effect is a little more involved and
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Fig. 2.14
The little “bump” on the earth’s surface
represents a whole mountain range.
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requires the use of a fundamental relation in the theory of gravitational
fields; Gauss’ law. It is expressed mathematically as

/ g-ndd = 4rG / cdv, (2.24)

where g is the acceleration due to gravity (expressed as a vector) and n is the
outward unit normal vector. The integral on the left side is calculated over
a closed surface and the integral on the right side is a volume integral
throughout the inside of the closed surface boundary. Essentially the flux
or “amount” of gravitational field coming out of the surface is proportional
to the mass contained inside the surface. In the diagram, the mountain
range is approximated by a “pill box” with height 4 and top and bottom
areas A. We suppose that /4 is much less than any lateral dimension and
therefore assume that the gravitational field is directed only out of the top
and the bottom of the pill box. Then Eq. (2.24) becomes

264 = 4nGo' Ah (2.25)
or
g =2nGo'h, (2.26)

where o’ is the density of the mountain range as determined by sampling
the local soil materials. With these equations we can now write an expres-
sion for the acceleration due to gravity as measured on top of the mountain
range:

4 a ,
g= 3 Gﬂ'am + 27Go'h. (2.27)

Since & < a, the first term on the right can be approximated using the
binomial expansion and then the ratio of the two measurements of the
gravitational field is found to be

g0~1 7+2aa’ (2.28)
The two corrections terms on the right side of the equation are the first of
several corrections that were eventually incorporated into experiments of
this or similar types. The first term 2h/ais the so-called free air term and the
other term is referred to as the Bouguer term. The point of Eq. (2.28) is
that, with data on the relative accelerations due to gravity, it should
be possible to calculate the ratio of the density of the mountainous material
to that of the rest of the earth. Bouguer’s pendulum measurements con-
vinced him that the earth’s mean density was about four times that of
the mountains, a ratio not too different from a modern value of 4.7. In
Bouguer’s own words

Thus it is necessary to admit that the earth is much more compact below than
above, and in the interior than at the surface . . - Those physicists who imagined a
great void in the middle of the earth, and who would have us walk on a kind of very
thin crust, can think so no longer. We can make nearly the same objections to
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Woodward’s theory of great masses of water in the interior. (page 33 of (Bouguer
1749)).

Bouguer’s experiment was the first of many of this type. A common
variant on the mountain ran ge experiment was to measure the difference in
gravitational field at the top and the bottom of a mine shaft. In this case,
the extra structure was not just a mountain range but a spherical shell
above the radius of the earth to the bottom of the shaft. See Fig. 2.15. An
equation similar to Eq. (2.28) holds although the Bouguer term must be
modified as

!
B . q P 3t (2.29)
&Ebottom a aoc

because of the shape of the spherical shell of density ¢/, and the radius ais
measured from the center of the earth to bottom of the mine shaft. Coal
mines were widely available in England and the seventh astronomer royal
and Lucasian professor of mathematics at Cambridge, George Airy (1801-
1892) was one of many to attempt this type of experiment. His early efforts
in 1826 and 1828 in Cornwall were frustrated by floods and fire. But much
later in 1854 he successfully applied his techniques at a Harton coal-pit in
Sunderland and obtained a value for the earth’s density of o = 6.6 gm/cm?
(Bullen 1975, p. 16).

Pendulum experiments continued to be improved. Von Sterneck
explored gravitational fields at various depths inside silver mines in
Bohemia and in 1887 invented a four pendulum device. Two pairs of 1 /2
second pendulums were placed at right angles. Each pendulum in a given
pair oscillated out of phase with its partner, thereby reducing flexure in the
support structure that ordinarily contributed a surprising amount of error
to measurements. The two mutually perpendicular pairs provided a check
on each other. Von Sterneck’s values for the mean density of the earth
ranged from 5.0 to 6.3 gm/cm?. The swing of the pendulums in a pair is
compared with a calibrated 1/2 second pendulum clock by means of an
arrangement of lights and mirrors as observed through a telescope.
Because they are slightly out of phase, the gravity pendulum and the clock
pendulum eventually get out of phase by a whole period. The number of
counts between such “coincidences” is observed and used in calculatin gthe
precision of the gravity pendulum period. Accuracies as high as 2 x 107
were claimed for the apparatus.

Other types of pendulums have also been used in geological exploration,
but they are based upon pendulums that are more involved than the simple
pendulum that is the fundamental ingredient of the experiments and
equipment described above.

2.3.4 The military pendulum

Since the mid-twentieth century physics has had a strong relationship with
the engineering of military hardware. Yet there are precursors to this
modern connection. Benjamin Robin (1707-1751), a British mathematician
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Fig. 2.15
A schematic of the earth with a
mine shaft of depth, .
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Fig. 2.16
Robin’s 1742 ballistic pendulum, (From
Taylor (1941) with permission from
Dover).

m
Fig. 2.17
Schematic diagram of the Blackwood

ballistic pendulum used in
undergraduate laboratories.

Pendulums somewhat simple

and military engineer gave a giant boost to the “modern” science of artil-
lery with the 1742 publication of his book, “New Principles of Gunnery.”
One of his contributions was a method for determining the muzzle velocity
ofa projectile; the apparatus isillustrated in Fig. 2.16. (Even today, under-
graduate physics majors do an experiment with a version of this method
using an apparatus known as the Blackwood ballistic pendulum—
Blackwood was a professor of physics in the early twentieth century at
the University of Pittsburgh.)

With a relatively modern apparatus a “bullet” is fired into a pendulum
consisting of a large wooden bob suspended by several ropes. The pro-
jectile is trapped in the bob, causing the bob to pull laterally against
the ropes and therefore rise to some measurable height. See Fig. 2.17.
Application of the elementary laws of conservation of energy and
momentum produce the required value of projectile muzzle velocity.

Here is the simple analysis. Prior to the moment of collision between the
projectile of mass m and the pendulum bob of mass M, the projectile has a
velocity v. After the collision, the projectile quickly embeds in the bob and
imparts a velocity ¥ to the bob. Momentum before and after the collision is
preserved so that

my =M+ m)V. (2.30)
After the particle is embedded in the bob, the kinetic energy of the com-
bination of projectile and bob thrusts the pendulum outward and upward

to a height 4. All the kinetic energy is transformed to potential energy and
therefore

%(M—I— mV? = (M + m)gh. (2.31)

Mutual solution of Egs. (2.30) and (2.31) yields the muzzle velocity of the
projectile,

e ;; ™ Jagh. 2.32)

The beauty of this result is that it bypasses the need to have any sort of
measure of the energy lost as the projectile is trapped by the pendutum bob.
That lost kinetic energy simply produces heat in the pendulum.

One wonders if the many students who perform this laboratory
experiment each year are aware that they are replicating early military
research.

23.5 Compound pendulum

The model of a simple pendulum requires that all mass be concentrated at a
single point. Yet a real pendulum will have some extended mass distribu-
tion as indicated in Fig. 2.18. Such a pendulum is called a compound
pendulum. If I, is the moment of inertia about the pivot point, / is the
distance from the pivot to the center of mass, and m is the mass of the
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pendulum, then Newton’s second law prescribes the following equation
of motion:

2

d=0 .
IPW + mglsinf = 0, (2.33)

and for small angular displacements we again substitute @ for sin @ The
linearized equation of motion is

ao
I, T +mglg =0 (2.34)
with period equal to
1 /1
=/ 2.
27 \| mgl 2d)

This expression reverts to that for the simple pendulum when all the mass is
concentrated at the lowest point.

2.3.6 Kater’s pendulum

The formulas for the period of the simple pendulum and the compound
pendulum both contain a term for g, the acceleration due to gravity, and
therefore one should be able to time the oscillations of the small amplitude
pendulum and arrive at an estimate of the local gravitational field. Yet
without special effort the results obtained tend to be inaccurate. For
example, it is often difficult to determine the appropriate length of the
pendulum as there is ambiguity in the measurement at the pivot or at the
bob. At the suggestion of the German astronomer F. W. Bessel (1784
1847), Captain Henry Kater (1777-1835) of the British Army invented a
reversible pendulum in 1817 that significantly increased the accuracy of the
measurement of g Kater’s pendulum, shown schematically in Fig. 2.19,
consists of a rod with two pivot points whose positions along the rod are
adjustable. In principle, the determination of g is made by adjusting the
pivot points until the periods of small oscillation about both positions
are equal. In practice, it is difficult to adjust the pivot points—usually knife
edges—and instead counterweights are attached to the rod and are easily
positioned along the rod until the periods are equal. In this way, the pivot
positions are defined by fixed knife edges that provide the possibility of
accurate measurement. Once the periods are found to be equal and
measured, the acceleration due to gravity is calculated from the formula

T =2m, /@;—hz, (2.36)

where /; and £, are the respective distances from the pivots to the center of
mass of the pendulum. But more importantly their sum (h; + h,) is easily
measurable as the distance between the two knife edge pivot points.
Equation (2.36) is not obvious and its derivation is of some interest.
Referring to Fig. 2.19, the pendulum, of mass m, may be suspended about

Fig. 218
A compound pendulum with an
arbitrary distribution of mass.

T

mg

Fig. 2.19
The Kater reversing pendulum.

2]
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either point P, or point P,. The distances of these suspension points from
the center of mass are hyand h,, respectively. The moments of inertia of the
pendulum about each of the pivots are denoted as J 1and 5. Therefore the
linearized equations of motion corresponding to the two pivot points are

a6 d?

The moments of inertia may be expanded using the parallel axis theorem
such that
Li=mk® +mh? I = g2 mh2, (2.38)

where k is the radius of gyration, an effective radius of the system about the
center of mass such that mk? is €qual to the moment of inertia about the
center of mass. Solution of Eq. (2.37) leads to periods of

K2+ B2 K2+ 1

Ty =2r o T =2rx pr (2.39)
With a little algebra we see that the periods are equal if
Mha(hy — hy) = K2(hy — hy). (2.40)

While it would seem easiest to set /i, equal to 4, realization of this con-

Instead, the counterweights are used to establish the other algebraic

condition;
Ti =15 =2m, /%. 2.42)

Example 3 Consider 4 Kater pendulum in the Jorm of a rod of length L and

mass m. Suppose, not very realistically, that we can arbitrarily position the

and therefore

example is due to Peters (1999).) The moment of inertia of the rod is
(1/12) mL? abour its center. By the parallel axis theorem the moment of
inertia about one end is (1/12) mL? + m(L/2)? = (1 /3) mL2, Referring
to Eq. (2.35), the period of an oscillation Jor the pivot located at one
end becomes Ty = (I/27r)\/(1/mgL/2) = (1/2m\/(2L/3g). Let x be the
distance from the center along the other half of the rod where the other
pivot point is located. By the parallel axis theorem, the moment of inertia
about this point is (1/12) mr2 +mx? 50 that the period is T B =(1/2m)x

(1/12)ym 12 ¢ mx?)/mgx. Setting T 4= Ty leads 10 4 quadratic expres-
sion for x with the rwo roots L2 and L[6. The root at L/2 is obvious and
uninteresting and therefore we choose x=L[6. Substitution of this root
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into the equation leads to Tg = (1/2m)\/(1/12)m L% + mx?)/mgx =
(1/2m)+/(2L/3g) = T4 as expected. As noted previously, the pivot points can
not be set exactly and some adjustments are required, using small counter
weights, in order to obtain equality of periods.

In practice, the lengths in Eq. (2.41) are difficult to predict accurately
and the experimenter uses a convergence process to arrive at equality of
periods. The counterweights are moved systematically until equality is
achieved. With this type of pendulum the National Bureau of Standards, in
1936, determined the acceleration due to gravity at Washington, DC as
g = 980.080 + 0.003 cm/s? (Daedalon 2000).

After its invention, many of the pendulum gravity experiments were
done with the Kater “reversing” pendulum. One of the ori ginal pendulums,
number 10, constructed by a certain Thomas Jones, rests in the Imperial
Science Museum in London. The display card reads as follows.

This pendulum was taken together with No. 11, which was identical, ... on a voyage
lasting from 1828-1831. During this time Captain Henry Foster swung it at twelve
locations on the coasts and islands of the South Atlantic. Subsequently it was used
in the Euphrates Expedition, of 1835-6, then taken to Antarctic by James Ross
in 1840.

2.4 Some connections

One of the fascinating aspects of the history of the pendulum is the
remarkable number of famous and not-so-famous physical scientists that
have some connection to the pendulum. This phenomenon will come into
sharper relief as our story unfolds. We have mentioned a few of these
people; here are some others. Marin Mersenne (1588-1648) , a friar of the
order of Minims in Paris, proposed the use of the pendulum as a timing
device to Christiaan Huygens thereby inspiring the creation of Huygen’s
pendulum clock. Mersenne is perhaps better known as the inventor of
Mersenne numbers. These numbers are generated by the formula

2?1, (2.43)

where p is prime. Most, but not all, of the numbers generated by this for-
mula are also prime. Jean Picard (1620~1682), a professor of astronomy at
the College de France in Paris, introduced the use of pendulum clocks into
observational astronomy and thereby enhanced the precision of astro-
nomical data. Picard is perhaps better known for being the first to accur-
ately measure the meridian distance L and his observations, like Richer’s
observations were used by Newton in calculating the earth’s shape. Robert
Hooke (1635-1703) well known for the linear law of elasticity, Eq. (2.13),
for his invention of the microscope, a host of other inventions, and his
controversies with Newton, was one of the first to suggest, in 1666, that
the pendulum could be used to measure the acceleration due to gravity.
EdmondHalley (1656-1742), astronomerroyal, of Halley’scomet fame, was
another user of the pendulum. In 1676 Halley sailed to St. Helena’s island,
the southernmost British possession, located in the south Atlantic, in order
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Fig. 2.20

Vening Meinesz pendulum. Four
pendulums arranged in mutually
perpendicular pairs are visible.
(Courtesy of the Society of Exploration
Geophysicists Geoscience center. Photo
©2004 by Bill Underwood.)

Pendulums somewhat simple

to make a star catalog for the southern hemisphere. As a friend of Hooke, - '
he was aware of Hooke’s suggested use of the pendulum to measure gravity
and did make such measurements while on St. Helena. (While Halley is
famous for having his name applied to the comet, he probably rendered a
significantly more important service to mankind by pressing for and fin-
ancially supporting the publication of Newton’s Principia.) In the next
century, Sir Edward Sabine (1788-1883) , an astronomer with Sir William
Parry in the search for the northwest passage (through the Arctic ocean
across the north of Canada) spent the years from 1821 to 1825 determining
measurements of the gravitational field along the coasts of North America
and Africa, and, of course, in the Arctic, with the pendulum.

The American philosopher Charles Saunders Peirce (1839-1914) makes
a surprising appearance in this context. Known for his contributions to
logic and philosophy, Peirce rarely held academic position in these bran-
ches of learning, but made his living with the US Coast and Geodetic
Survey. Between 1873 and 1886, Pierce conducted pendulum experiments
ata score of stations in Europe and North America in order to improve the
determination the earth’s ellipticity. However, his relationship with the
Survey administration was fractious, and he resigned in 1891. And finally,
in the twentieth century, we note the work of Felix Andries Vening
Meinesz (1887-1966), a Dutch geophysicist who, as part of his Ph.D.
(1915) dissertation, devised a pendulum apparatus which, somewhat like
Von Sterneck’s device, used the concept of pairs of perpendicularly
oriented pendulums swinging out of phase with each other. (See Fig. 2.20).

In this way Vening Meinesz eliminated a horizontal acceleration term
due to the vibration of peaty subsoil that seemed to occur in many places
where gravity was measured. Vening Meinesz’ apparatus was also espe-
cially fitted for measurements on or under water and contained machinery
that compensated for the motion of the sea. Aside from the interruption
caused by the Second World War, some version of this device was used on
submarines from 1923 until the late 1950s (Vening 1929).

In the next chapter we add some complexity to the pendulum. We
include friction and then compensate for the energy loss with an external
source of energy. Eventually, we also relax the condition of small ampli-
tude motion and therefore the equations of motion become nonlinear,
a significant complication in our discussion. However the small amplitude
motion of the linearized pendulum will predominate in three of the
chapters; those on the Foucault pendulum, the torsion pendulum (which is
well modeled as linear), and the pendulum clock. Obviously, the linearized
pendulum is the basis of important applications.

2.5 Exercises

1. In a later chapter we discuss the Foucault pendulum that was the first explicit
demonstration of the rotation of the earth. The original Foucault pendulum was
67 meters in length. Calculate the frequency and period of its motion. The plane
of oscillation of the pendulum rotated through a full 360 degrees in 31.88 hours.
How many oscillations does the pendulum make in that time?
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2. In the early days of gravity measurement by pendulum oscillation, a “seconds”
pendulum had a length of about 1 m. This connection between the meter and the
second was thought to have some special significance. What was the actual
period of the “seconds” pendulum? From your result how do you think the
period of the pendulum was initially defined?

. A particle undergoing uniform acceleration from a standing start at the position
x=0 has the following parametric equations (or time series) for position and
velocity:

Vv =at
1,

X ==at".
2

Determine the equation for its orbit in an x, v phase space and sketch the orbit.

. Consider the phase orbit given by Eq. (2.6). Form the phase space diagram such
that the x-axis is 6 and the y-axis is §/w Then the phase orbit becomes a circle of
radius 6. Note also that # =6, coswr. Therefore the phase point traces out a
circular orbit with a polar angle & = wt. We are now ready to easily prove that
areas in phase space are preserved in time. Proceed as follows. Consider two
boundary orbits in phase space defined by two pendulums of different ampli-
tudes (energies), 6p(1) and 6y(2). These orbits are two concentric circles. Now
imagine a region between these two orbits bounded on the other sides by angles
a1 =wt; and a; =wt, Using polar coordinates calculate the area of this region
and show that for some later times #; + Azand t, + At, the area still only depends
upon the difference, #, — ¢,. That is, the area is preserved in time, and the system
is conservative. See Fig. 2.21.

. Find the Fourier series for the periodic function,

JSO=1:0<t<T/2
fO=-1:-T2<t<T.

- The complete restoring force of the pendulum is F= —mgsinf. Various
approximations may be obtained using a Taylor series expansion in which the
expansion variable is the length along the arc of the pendulum’s swing, s = /6.
That is

F(s) = Flso) + F'(50)(s — 50) + F"(s0)(s — 50)*/2! + F"(50)(s — $0)* /3 + - - -

where F’ =dF|ds. Express F in terms of s. Let sp=0 and show that the first
nonvanishing term in the expansion is the usual small angle linear approxima-
tion, F~ —mgf. Now let so= //4, and show that the lincar approximation, in

the region of 6§ =7/4, is
mgl/m 1
Fr—-——) —4|.
#G-)-]

- Determine equations for the constants a and b in the Lennard—J ones potential,
in terms of given values of the molecular spring constant, k and the equilibrium
bond length, Teq Note that the force is zero at r= Feq-

- Derive Eq. (2.29) for the ratio of densities o’/ where o is the density near
the surface of the earth (above the mine shaft), and o is the average density of the
earth. For this derivation try the following sequence of calculations. First cal-
culate g at the bottom of the mine shaft using Gauss’ law, and remember that the
carth at a radius above that of the bottom of the shaft contributes nothing to
the gravitational field. Then use Gauss’ law to calculate the gravitational field on
top of the earth by dividing the earth into two parts: one at a depth below the
shaft with density o, and the shell above the bottom of the shaft with density ¢”’.
Finally, examine the ratio of rop/&bottom and use the binomial expansion in
terms of h/a where needed. Neglect any terms that are more than first degree in
the ratio A/a.

@=w(t,+A1);

a=w(t +At)

a=w()

/£
o
a=w(t)

Fig. 2.21
Figure for problem 4.
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Fig. 2.22

Figure for problem 9.

Pendulums somewhat simple

Center
of

9. Figure 2.22 shows a Kater pendulum with two attached masses, M and 2M The

10.
11.

12.

pivot points are just inside the ends of the bar (mass m) at a distance ¢ from
the ends. The smaller mass is fixed at a distance of ¢ from the right pivot point.
The larger mass is located a variable distance x from the left point. The point of
this exercise is to find the location of the mass 2M such that the pendulum will
oscillate with equal period from either pivot point.

(a) Find the center of mass % of the system in terms of the quantities shown
in Fig. 2.22.

(b) Find A, and h,.

(C) Check that hl + l’lz =L —2e.

(d) Use the condition that hy=h; to find the appropriate value of x.

For the example in the text, 4y =L/2 and 4, =L/6. Using Eq. (2.42) show that
these values lead to the correct result for the period.
Repeat the analysis for the Kater pendulum example in the text by putting one
pivot point half-way between the center and the end of the rod; that is, at L/4
from the center. One position for the other pivot is, trivially, a distance L/4
from the center on the opposite side of the center line. (a) Using the analysis in
the example, show that there is another location for the second pivot point ata
distance /3 from the center on the opposite side from the first pivot point.
Show that the periods of oscillation for the pendulum from each pivot point
are equal. :
Consider a pendulum that consists of a uniform rod of length L and mass M
that hangs from a frictionless peg that passes through a small hole drilled in the
rod. The rod is free to oscillate (without friction) and assume that the oscilla-
tions are of small amplitude and therefore the equation of motion may be
written as

d*
I T + MgD6 =0,

where I is the moment of inertia and D is the distance between the center of
mass of the rod and the pivot point.

(a) What is the frequency of oscillation of this pendulum?

(b) If the pivot point is located very near the top of the rod (D = L/2), find the
frequency in terms of I and g.

(¢) If the pivot point is located 1 /3 of the way from the end of the rod, find the
frequency of oscillation.

(d) If, in general, the pivot point is located a distance D — L/k from the center
of mass where k € [2,00), find a general expression for the frequency in
terms of L, g, and k.

(¢) For what value of k is the frequency a maximum?

(f) For what value of & is the frequency a minimum?

13. Find the Mersenne primes for p=3, 5, 7,11, 13,17, 19, 31.

e ——
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3.1 O Botafumeiro

In the northwest corner of Spain, in the province of Galicia, lies the mist
shrouded town of Santiago de Compostela, the birthplace of the cult of

Santiago (St. James, the major apostle), and the home of the magnificent. .

cathedral that is presumably built upon the bones of that martyred apostle
(Adams 1999) (see Fig. 3.1). For a thousand years, pilgrims have sought out
this cathedral as a shrine to Saint James where they might worship and
receive salvation. The most famous and unique feature of the celebration
of the mass at this cathedral, at least since the fourteenth century, is
O Botafumeiro , a very large incense burner suspended by a heavy rope from
a point seventy feet above the floor of the nave, and swung periodically
through a huge arc of about eighty degrees (Sanmartin 1984). The rapid
motion through the air fans the hot incense coals, making copious amounts
of blue smoke, and the censer itself generates a frightening swooshing sound
asit passes through the bottom ofits arc. Some of the physics in this chapter
is manifested by the remarkable motion of O Botafumeiro and therefore we
provide some details of its structure and dynamics (Sanmartin 1984).

The censer, or incense burner itself, stands more than a meter high and is
suspended by a thick rope whose diameter is 4.5 cm. (One can imagine
something about the size of a backyard barbecue grill.) Over a period of
seven hundred years, a variety of censers have been used. The original
censer seems to have been silver, which was later replaced by another silver
one, donated by the French king Louis XI. A papal bull from Pope
Nicholas V, in 1447, threatened excommunication to anyone who stoleit. It
was probably this latter censer that was destroyed when it suffered a violent
fall in 1499. The censer is sporadically mentioned in records over the next
couple of centuries with yet another silver replacement being made as late
as 1615. There is some evidence—but not conclusive—that French troops
took a silver censer during Napoleon’s 1809 campaign. At some point prior
to 1852, the censer was made of iron, but at that date it was replaced by a
censer of silvered brass, which is the one in use today (see Fig. 3.2). The
current censer has a mass of 53kg and is about 1.5m in overall height. Its
center of mass is about 55 cm above the base. Approximately three meters

Fig. 3.1
The cathedral of Santiago de
Compostela in northern Spain. Photo by
Margaret Walker.
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Fig. 3.2 it pass through the bottom of jts arc, spewing smoke
(0] Botafumeiro, the giant censer that :

hangs in the transept of the cathedra] of

Santigo de Compostela. (Reproducido
con autorizacion, Copyright ¢ 199, !
Prensa Cientifica, S.A_ Reservados therefore it is a compound pendulum, a pendulum
todos los derechos.)

..,_ —

Fig. 3.3
Support structure for the rope holding
O Botafumeiro. (Reprinted with
permission from Sanmartin ( 1984,

p. 939). =1984, American Association
of Physics Teachers.)
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The linearized pendulum with complications

whose bob is an extended nonspherically symmetric mass. Second, the fact
that the censer needs to be pumped implies that there is energy dissipation
in the system and therefore damping of the motion. Third, pumping or
forcing of the system is a fruitful topic in itself and will be seen to lead to
rich dynamical behavior. Fourth, the swing of the pendulum is quite large,
and, contrary to Galileo’s conclusion of isochronism based upon his crude
observations, the period of the motion is nor independent of the amplitude
of the motion. Finally there are some subtle effects associated with the rope
itself'in the particular case of O Botafumeiro. That is, the mass of the rope is
not insubstantial and should be included in analysis of the censer’s motion
as should the fact that the inertia of the system leads to the rope not being
stretched straight throughout the oscillation. This latter phenomenon
suggests that the motion might be treated as that of a double pendulum.
(Although we will not do so in this book. See (Sanmartin 1984).) The
subject of this chapter is, then, some of the complications to pendulum
dynamics suggested by the motion of O Botafumeiro.

As a postscript to this introduction, Sanmartin notes that the history of
O Botafumeiro has not been without mishap and even violence. On J uly 25,
1499, there was an accident involving the four chains that attach the censer
to the rope. The chains broke, thereby sending the censer crashing into one
of the side doors. On May 23, 1622, the rope broke. This time, the censer
fellapproximately vertically since the amplitude of the motion was small at
the moment. In a more sinister vein, it has been suggested that the sus-
pending rope was used in the murder of the Archbishop Suero Gomez de
Toledo at the entrance to the cathedral on June 29, 1366. Two noblemen,
F. Perez Churruchao and G. Gomez Gallinato were involved. Apparently
they also killed the Dean of the cathedral, Pedro Alverez, who, when he
discovered the fate of the archbishop, ran back into the cathedral. The
killers and a third person, Pedro el Cruel, chased him around the triforium
before catching him. Pedro later denied any involvement.

Let us now leave the exotic world of O Botafumeiro, and return to the
generic pendulum. We first enhance our simple model of the linearized
pendulum, of the previous chapter, with the addition of various physical
factors. With each new factor the mathematics becomes more complex
and, eventually, reaches the point of intractability. At that point one must
resort to numerical solution of the equations on a computer. In order to
keep the analysis manageable, we will first treat many of the factors
separately. In the second half of the chapter, we consider the full large
amplitude, nonlinear, case.

3.2 The linearized pendulum with complications
3.2.1 Energy loss—friction

A common observation is that the periodic motion of a pendulum
gradually diminishes and that, eventually, a pendulum will come to rest. In
fact all large systems that are not continually energized lose energy . There




30

Pendulums less simple

is no such thing as perpetual motion. In a mechanical system, the causes of
energy loss are multitudinous, and include friction between solid surfaces
and drag on the system from fluids and gases. Objects that travel through
the atmosphere or other “fluids” at relatively high speeds experience a drag
force that is proportional to the square of the velocity. For slower objects,
the drag force may be realistically modeled as proportional to the first
power of the velocity, a relationship named after the nineteenth century
Cambridge University mathematician and physicist, Sir George Stokes
(1819-1903). (Stokes, like Newton, Airy and the present day cosmologist
Stephen Hawking, was, in his time, the Lucasian Professor. Like many
other prominent scientists, Stokes was drawn to the study of the pendulum.
He was particularly interested in the motion of pendulums within a fluid
where friction would be important. His work on pendulums led to the
study of geodesy and by the 1850s he had become the foremost British
authority on the subject.) What constitutes a relatively high or low speed
depends on the physical properties of the medium. But for a slow pendu-
lum travelling in air, the linear dependence of drag on velocity is a reas-
onable approximation. Furthermore, other frictional effects for real
pendulums seem also to be accounted for with the same velocity depend-
ence. (However, O Botafumeiro travels fast enough that a velocity squared
dependence is more realistic.) For now, we approximate the aggregate
effect of drag or friction for typical pendulum as '

do

FD = —27E,

3.1)

where v is a constant. The equation of motion for the linearized pendulum
now has an added term and becomes

d%0 dg g
W—FZ’VE-F?H

The general solution of this second-order differential equation has the form

=), (3.2)

0(f) = Ae"' + Be'™,

where 4 and B are constants to be determined from initial conditions, and
r1and r, are the two roots of the quadratic equation created by substitution
of a trial solution, €, into Eq. (3.2);

P+ QY+ (/1) =0

r=—y+4/7 - (3.3)
Fp = —y — /% — W2 34

The angular frequency of undamped oscillations is wy = ve/l. The
strength of the damping now determines the time-dependent pendulum
behavior. Three distinct regimes exist.

N
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‘Underdamped > < «?

For this case, define a new frequency

W= wi — A2, (3.5)
fThen the two roots are complex quantities which can be written

f rn=-—-y+iw

i

i Fy = —7y — jw.

The negative real part of the roots implies exponential decay, while the

| imaginary parts (+iw) yield oscillations at a new frequency that is slightly
. smaller than the undamped value w,. Combining these components, the

S

angular motion can be expressed in the form

6 = Ce™ cos (wt + ¢). (3.6)

The canonical solution given earlier contained two constants 4 and B. An
illustration of this form of damped oscillation is given in Fig. 3.4

Two constants remain in the new form of solution as expressed in
Eq. (3.6)—one (C) defines the amplitude; the other (¢) appears as a phase
shift. As noted before, specification of initial conditions for the pendulum
will explicitly determine C and ¢. For example, suppose it is known that at
t=0, 0 =6, and the pendulum is at rest. Then

6 = Ccos(¢)
and
wsin (¢) + v cos (¢) = 0.
From these two equations C and ¢ are easily calculated.

Critically Damped 2 = w}

* In this special case, the two roots become equal and the method described

above cannot be applied . The solution to the equation of motion is instead

0(t) = e "' [4 + Bi]. 3.7

The two constants can be determined as before from given initial condi-
tions. If at =0 the pendulum is at rest at a displacement 6, then

Op= A
and
B—A4y=0.

A critically damped response using the previous choice wy =2 is included

in Fig. 3.5.

As can be seen in the figure, for critical damping the decay is optimum in
the sense that the angle asymptotically approaches zero without overshoot
(underdamping) or undershoot (overdamping).
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Fig. 3.4
Ilustation of an underdamped
oscillation in which the amplitude slowly
decays under control of the exponential
prefactor. The pendulum is released
from rest at an angle of 10°. Two
different damping values are shown. The
dotted lines indicate the decay of the
respective amplitudes.

wy=2.0

Overdamped

[V}

Underdamped

Amplitude

Time

Fig. 3.5

Decay of the pendulum for three
regimes: underdamped (lower curve:

v =1); critically damped (middle curve:
7 =2); overdamped (upper curve: y = 3).
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Fig. 3.6
Phase portrait of the underdamped
linearized pendulum.

Pendulums less simple

Overdamped 2 > (.2
For the overdamped case, both roots are real, so the decay is entirely

exponential. With L
k=1/7* -, (3.9)

which is of course a real quantity in this situation, the solution is
0() = e [Aek + Be™H]. (3.9)

As in the previous two cases, the constants 4 and B will be fixed by the
Initial conditions of the problem.

The time dependence of the pendulum’s angular displacement for this
case is also included in F ig. 3.5. Furthermore, each of these motions may
also be represented in phase space. The underdamped case is illustrated
in Fig. 3.6.

In the ideal case of the completely undamped simple pendulum, the total
energy of the system is conserved. The energy flows alternatively between
kinetic and potential energy. But for the damped pendulum the energy
dissipates exponentially. We calculate the energy of the pendulum as
follows. Starting with Eq. 2.7);

o 1
E= %m1292 + Emglez, (3.10)

we obtain the total energy of the linearized pendulum. The 6 and 6 terms
are replaced by Eq. (3.6) and its derivative. The final result is cumbersome
and contains several terms,

1 . ) .
E= Emlzé(z)e_z””[(’yz +wf)sin®a + w?cos? o ywsin 2a], 3.1

where oy =z + @, but, unlike the nondissipative case, each term contains a
decreasing exponential factor

fit) = e (3.12)

o
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/ that decays at twice the rate of either the angular displacement or velocity
' time series. The remaining parts of each term in the expression are periodic
ﬁ w1th either the fundamental frequency w or double that frequency.

s

 O—

Example 4 The electrical analog of pendulum damping is the presence of
reszstance R now added to the tuned LC circuit of Fig. 2.13. Figure 3.7 shows R §
' the modified schematic diagram for the tuned circuit. Eq. (2.20) is now
. augmented with a term proportional to the current, the simple Ohm’s law M
i term , as follows. .

! d dg g
L=2+RE 12 0. (3.13)  Fig.3.7
g dar d C Tuned circuit with resistance.

. Substitution of the trial solution q = qoe™ "' sin(wt + @) yields the frequency
. and the damping as

|
~ w=4/wi—~2, (3.14)

' where

| 1 R
{ Y 3.1
r wo IC and y= A (3.15)

. We know from electrical theory that the power dissipation occurs only in the
' resistance R, and is given by the formula

i Power = R. (3.16)

Again the time dependent expression is cumbersome, but it does contain the
exponential decay factor

A1) = e~ R/ (3.17)
as expected. The quantity L|R is sometimes referred to as the decay constant

or time constant or ring time of the circuit. It is the time during which the
energy decays by a factor of 1/e from the original amount.

Example 5 There are many examples of the decay of oscillations found in
nature. For example, in magnetic resonance imaging, large numbers of tiny
nuclei are momentarily energized by radio frequency electromagnetic radi-
ation. Once the radiation is turned off, the nuclei “relax” to their equilibrium
state. The relaxation time (equivalent to the decay time) tells the observer
something about the environment and, in medical applications, the relaxation
time can help with diagnosis.

Example 6 A more obvious example is found in the “ring” time of a large
room, such as a concert hall. Each hall has its own damping constant (the
inverse of the ring time) which will depend on many properties of the hall,
including the size of the audience and the materials on the inside surfaces of
the hall. A conductor can sometimes make dramatic use of the ring time.
Suppose a large choir and orchestra are performing at a high volume and then
have a sudden rest in the music. The musicians all stop playing very abruptly.
The conductor can then draw out the pause—the time when the musicians are




34

Pendulums less simple

silent—such that the music will still linger’ in the air even while the musicians

are quiet. This phenomenon is sometimes used with powerful effect Just prior
to a grand finale. Conductors of the famous choral work “Messiah” by
George Handel exploit this bit of physics just before the last Jew chords of the
popular “Hallelujah” chorus.

3.2.2 Energy gain—forcing

The addition of dissipation to the pendulum causes energy decay and,
strictly speaking, the motion continues at increasingly reduced energy for
an infinite time. However, except for very long, massive pendulums with
heavy masses, the oscillations do not actually last more than a few
moments. Therefore continuous operation of most pendulums necessitates
that some kind of forcing be applied to provide an energy infusion that
compensates for the energy loss caused by the damping. In this section, we
discuss several types of forcing: sinusoidal forcing, pulsed forcing, and
parametric forcing.

3.2.2.1 Sinusoidal forcing
Sinusoidal forcing is simply a force with a constant amplitude and a
sinusoidal time variation and it is inserted into the equation of motion as
d*0 do g .
— 4+ 2y 218 , .
d12+ fydt—i—lﬁ Fsin Qf (3.18)
(Note that in Eq. (3.18) F does not have the units of a force, but that its
dimensions are (time)™). This differential equation may be solved by
standard methods (See, for example, chap. 5 of (Zill and Cullen 1993)). The
complete solution consists of a general solution to the corresponding
homogeneous equation and a particular solution appropriate to the full

00) = /et + 3¢ sin (wr + ¢y) + —— Q1+ ¢),
VA2 4 (W2 — Q2)2

(3.19)
where
¢1 = tan~! (%) and ¢y = tan™! (wgzz%J (3.20)
and
g = él’ and W= /w2 — 2. (3.21)

rmmmm.sm:p;m»m O S Sir
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The constants ¢; and ¢, depend on the initial conditions for the pendulum.
If we assume that the pendulum is a rest when the clock is started, then
6(0) =0 and d6(0)/dt =0. These conditions lead to the following expres-
sions for the constants:

—2F0)
[472Q2 + (F — Q2)?]

:—m[ (Wi — Q) + 292 }
; .

(3.22)

C
T 4 2 -0

The general solution, Eq. (3.19), has (a) a term that decays—a rransient
solution— and (b) a steady state solution that predicts long term periodic
motion of the pendulum at the forcing frequency, Q. It is interesting to note
that while the frequency of the sinusoidal term of the decay part is w, which
depends on the resonant frequency wy and damping vy, the frequency of the
steady state sinusoidal term depends only on the frequency of forcing, Q.

The amplitude of the steady state periodic motion depends on the size of
the damping term. If the damping is quite small and if the forcing frequency
{21s close to wy then the amplitude of the motion is relatively large. In fact,
the expression goes to infinity if there is no damping at all. This case is
described below. But for finite damping the shape of the amplitude curve
as a function of Q for several values of damping coefficient, v, is given in
Fig. 3.8. Each curve has a finite maximum that indicates the frequency
value for maximum absorption of energy. In the previous chapter we
discussed the concept of resonance as a periodic exchange of kinds of
energy. We can also talk about resonance as the state of a system of
maximum energy absorption. When € equals wy the system is in the res-
onant state: and absorbs energy most easily. Furthermore, the resonant
state is characterized by a certain width in frequency units that depends on
the amount of damping. If the system is lightly damped then the resonant
state is narrow but very absorbent with an extremely efficient transfer of
energy from the forcing mechanism to the pendulum. On the other hand, if
the damping is relatively strong, then the resonance is broad band and not
very sensitive to frequency changes near wo, but neither is the transfer of
energy very efficient because much energy is dissipated as heat. Additional
details on resonance and the quality of the resonance as measured by the
“Q” factor are discussed in Appendix A.

The study of periodic motion is at least partially motived by the fact that
its mathematical form is relatively simple and the resulting differential
equation of motion may be readily solved. To actually build a mechanical
model of a pendulum (even a linearized pendulum) that is driven by the
simple sinusoidal forcing function is not trivial. We discuss a similar (but
nonlinear) pendulum later in this book but for now simply note that in
most cases, simple mechanical pendular forcing is not well modeled by this
function. However, there is one widely used application that does fit the
linearized model of sinusoidal forcin g very well; that is, the tuned electrical
circuit that is subject to a sinusoidal electromagnetic field.
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Fig. 3.8
Amplitude as a function of forcing

frequency for various amounts of
damping.
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We have already analyzed the LRC electrical circuit and found that,

like the unforced, damped, linearized pendulum, the motion of charge

among the elements gradually dies away as the energy is dissipated in the
heating of the resistor. However, a periodic electromagnetic energy field
Impinging on the circuit wil] induce a time varying voltage across the circuit
elements. This voltage will sustain the flow of charge through the circuit. In

transmitted as a modulation of the original periodic electromagnetic field.
This chain of events is the essence of radio and television reception.
Returning to the basic mathematics of sinusoidal forcing in the circuit we
find that, with the addition of the periodic electromagnetic field, the bal-
ance equation for the voltage across the circuit is

2
L%+RZ—?+%: V'sin Qr. (3.23)

This equation is identical in form to Eq. (3.18) and therefore all the
mathematics derived from that equation of motion apply to this differ-
ential equation for the charge. We observe transient and steady state

solutions, and we observe resonance. In a radio or television, we tune

the desired transmitting station. In this way the radio or television receiver
discriminates among transmitting stations and is able to select a particular
station with its particular carrier frequency, w,

Let us conclude this section on sinusoidal forcing by looking at what
happens if the system is forced without damping. Intuition suggests that the
effect of an energy input from forcing without a corresponding dissipation
of energy through damping will result in an oscillatory pendulum whose
amplitude of motion will grow without limit. But this result is not obvious
from simply setting the damping equal to zero in the solution of the general
case. Therefore we begin again with the equation of motion from which the
damping term is removed:

426 ,
=+ ?e = Fsin Q1. (3.24)

Using standard techniques, we find the general solution to be
0(t) = by sinwyr + by coswyt + —ZF\Z sin 0. (3.25)
wy— O

As before we note that two sinusoidal terms contain the natural frequency
wo, while the other sinusoidal term has the forcing frequency, (). Again, we
assume that the pendulum is initially at rest; 8(0) =0=6'(0), and thereby
determine the by, coefficients. This calculation results in the solution

8(r) = (F/wo)[wo sin Qt — QO sin wot] '

D (3.26)

!

e



-

The linearized pendulum with complications

This solution is only defined when the forcing frequency is not equal to the
resonant frequency. In this case, and perhaps somewhat surprisingly, the
nonresonant forcing does not lead to an unlimited growth in displacement.

For resonant forcing the case is different. We can determine the behavior
when the frequencies are equal by a limit process whereby Q is allowed to
approach wy Application of L’Hopital’s rule results in

: F . ’

lim 0(2) = ——; [sin wot — wyt sin wy1]. (3.27)
Q—wy 2(,()0

The second term of this solution grows without limit, as our intuition

suggested. A sketch of the solution is shown in Fig. 3.9.

3.2.2.2 Pulsed forcing

The common playground swing is one of the most ubiquitous examples of
the driven pendulum. One pictures a small rider on the swing being pushed
by an older child or adult. We might be tempted to model the periodic
pushing by the second person as sinusoidal forcing. But, in reality, the rider
receives a push or impulse, as the swing moves forward through the bottom
of its arc, rather than sinusoidal forcing. Thus, a realistic model of the
pushed swing will incorporate pulsed forcing. The profile of the push may
be simply modeled as a rectangular pulse. Of course, any real pulse will
have “soft” edges, but in either case the periodicity of the forcing and its
nonsinusoidal form will guarantee that any realistic shape will have many
Fourier components. We therefore expect complexity beyond that observed
for sinusoidal forcing. While the mathematics is more complex, the final
results are similar to the case of sinusoidal forcing. The fundamental fre-
quency component of the forcing is a dominant factor in the resultant
motion,

Let us assume that the swing starts from rest and that the periodic
pulsing occurs at the beginning of each cycle at the bottom of the arc. In
this first attempt at a model we ignore damping and let the amplitude of the
motion be small in order that the swing may be treated as a linearized
pendulum. The push function is illustrated in Fig. 3.10 and is written as

Fn=F O<t<rt

(3.28)
=0, t<t<T=nrt

For simplicity of solution we choose the push time to be an integer fraction
of the period of the pendulum. Furthermore, the period T is made to
coincide with the resonant motion of the pendulum, as is the common
practice in pushing a swing. That is

T= 27r\/§ with an angular frequency of wy = \/% (3.29)

With the pulsed forcing term , the equation of motion is now

d2e do0)

7 + w(2)0 = F(¢) with initial conditions 6(0) = 0, o 0. (3.30)
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Fig. 3.9

Angular displacement as a function of
time due to forcing at the resonant
frequency.
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Fig. 3.10
Pulsed drive as a function of time.

Pendulums less simple

Forcing pulse
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The nature of the forcing function is such that the differential equation is
readily solved by Laplace transform techniques. (For the uninitiated, we
cryptically note that the Laplace transform technique consists of (a) con-
verting a differential equation to an algebraic equation, (b) solving the
algebraic equation, and (¢) by the appropriate inverse transform operation,
converting that algebraic solution into the desired solution of the differ-
ential equation. Its name comes from its originator, the French mathem-
atician and astronomer, Pierre Simon Laplace (17491 827). For a standard
treatment see, for example, chapter 7 of (Zill and Cullen 1993).) The fol-
lowing definition of the transform provides the notation:

L{0(1)} = 6(s) :/ e~ (1) dt. (3.3D
0
The transformed version of the equation of motion is then
K1 — )
2 2 -
S C"‘)(S) + LL)O@(S) = WT_)’ (332)
with the transformed solution being
_ 1 — e
o) = (2 4+ wB)(1 — e=s7)
F 14 et o eS|
- S(S2 <t wg) [ —e™5T _ s Dr J (333)

The inverse transform may be found with the help of the following
identities:

_ 1 1
I {m} = (1 ~cos ) (3.34)
and
L e L{6(D)}] = 6z — a)U(t — a), (3.35)
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where U(# — a) is the unit step function equal to zero for < g and equal to
one for 1> a. The full solution to the equation of motion is then

() = w—% [1 — coswol + U(t — nt) — U(t — nt) coswy(t — nt)

+ U(t — 2nt) — U(t — 2nt) cos wy(t — 2n7) - - J
F
+— | = Ult— 1)+ Ut — t)coswy(t — 7) — Ut — {n+ 1}z
“o
+ Ut — {n+ 1}7)coswy(t — {n + l}r)-o-J, (3.36)
where we have utilized our original assumption that nt = T, and the peri-
odic properties of trigonometric functions. We can also write the solution

for each time interval, either during a pulse, or between pulses. For
example (in units of F/wj}),

0(f) = [1 — coswpi] O<r<t
= [coswp(? — 7) — cos wpl] 1<t< T
= [1 + coswy(? — 7) — 2 cos wy!] T<t<T+r<
=[Zcoswo(t—r)—2coswoz‘] T+t<t<2T
= [l +2coswy(t —7) —3coswpf] 2T <1< 2T +7
= [3cos wy(t — 7) — 3 cos wo!] 2T+t <t < 3T

=[l+3coswy(t— 1) —4coswpr] 3T <t<3T+1 (3.37)

and so on in the same pattern. Every second piece of the solution can be
written as a simple sine or cosine function with a suitable amplitude and
fixed phase angle. The alternative pieces are similar except that each has the
additional factor of (1 — cos wyf). The overall result is a sinusoidal function
with a linearly increasing amplitude as seen in Fig. 3.11. For that illus-
tration the forcing pulse occupies ten percent of the period of the motion.
Note that Fig. 3.11 is very similar to Fig. 3.9, which illustrates sinusoidal
forcing. Our intuition that the two types of forcing would lead to similar
results has been vindicated. As usual, the model becomes unrealistic when
the angular displacement becomes large.

We have ignored two effects: damping and the actual sinusoidal
dependence of the gravitational restoring force. For the moment we
defer treatment of the latter effect and just add damping to our linearized,
pulsed pendulum. With damping, the motion of the pendulum no longer
diverges but is bounded, and depending on the damping factor, can be
made to have a relatively small amplitude. The equation of motion now
becomes

2

20 o,
T T v+t = K (3.38)
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Fig. 3.11

Increasing angular displacement due to
pulsed resonant forcing.
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Fig. 3.12
Angular displacement due to pulsed
forcing, but with added damping.
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with the same initial conditions. Following the methodology of the
undamped case we find the Laplace transform of the solution to be

F

oG :s((s + 72 +w?)

’:l — ST T e—(n+1)sr +e—2nsr _ e—(2n+1)sr:'

(3.39

where

W= wé - 72.

The solution to this equation is proportionately more complex than that of
the undamped equation of motion. Computation of the inverse transform
is left as an exercise for the persistent reader. It is lluminating to view the
graphical representation of the solution shown in Fig. 3.12. Note that the
time series is asymmetric and that the pulse causes the pendulum to be
strongly displaced during and after the pulse, but that the pendulum loses
energy, due to damping, between pulses.

The rather cumbersome form of the solutions to the pulsed pendulum
equations of motion can motivate the search for a model that will produce
less complex solutions. It turns out that some simplification can be
achieved by letting the pulse become very strong during a very short time
period. We consider the limit for which the pulse strength approaches
infinity while the pulse duration approaches zero. This mathematical
wizardry is achieved with the Dirac delta function, defined (Hundhausen
1998) as

0(t—1)=0 for t#14, and / ot — to)de = 1. (3.40)

This function was invented by the theoretical physicist Paul Adrien
Maurice Dirac (1902-1984) in order to deal with certain mathematical
difficulties in the formulations of quantum mechanics. It has proved useful
in a variety of contexts. Sometimes it is referred to as the “needle” function.
We may think of the shape as being that of an infinitely thin vertical spike
based at the coordinate #,. Although this sort of infinitely quick, infinitely
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hard push on a pendulum is a little unrealistic, the use of the delta function

leads to some simplification of the analysis. We rewrite the equation of
motion as

4?0 do
7=+ 27?: +wol = FI8(1) + 6(t — T) + 6(z — 2T) +6(t - 3T)-- 1,
34D
where F is now a constant and 7= 2w/wo. The Laplace transform of this
equation is
F

OO =r
[(s+9)* + w ]
where w? = (W —~2). Using various inverse transform relations, the
solution to the equation of motion becomes

[1 + e—xT -+ e—ZST ks e—3sT 4+ .. .]’ (342)

0(t) = g le™sinwt + Ut — T)e=" D gin wit—T)--]. (3.43)

Since w # 27/ T, it is cumbersome to write this solution as a set of piecewise
solutions. The general effect is that while the amplitude decays slightly
during the interval between each pulse, the next pulse provides a strong
jump in the amplitude. The sharpness of the push causes a slight discon-
tinuity in the slope of the time series at the moment of the pulse. Eventually
the decay caused by the dissipative term, and the energy input caused by
the Dirac function pulse balance each other and the system arrives at a
steady periodic state. For a lightly damped swing, the motion is periodic. A
simulation of the swing’s motion for the first few pushes is shown in Fig.
3.13.

If the equation of motion does 707 include damping, then the solution in
each interval is almost trivial:

0(2) = gﬁsin wot  (n—1)T<t<nT. (3.44)
0

The amplitude grows linearly with #, as it does for the finite pulse width
case, shown in Fig. 3.11.
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The linearized pendulum with complications :

Fig. 3.13

Angular displacement due to Dirac delta
function forcing (and damping). Note
the slight discontinuity in the slope of the
angle at the point of forcing.
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Pendulums less simple

Delta-function forcing is, of course not entirely realistic, but the motion
it promotes is quite similar to that provided by forcing from finite width
pulses. And the delta function has the huge advantage of providing simpler
mathematics for the motion of the pendulum. Therefore, as a model, delta
function forcing is a viable alternative to the more complex problem of
finite width forcing.

3.2.3  Parametric forcing

Parametric forcing is any method of forcing that varies some parameter of
the pendulum’s configuration in a periodic manner such that the forcing
energy becomes at least partially converted to motional energy for the
pendulum. An ubiquitous example of periodic parametric forcing is the
pumping of a playground swing performed by the rider in order to build
and then maintain the swing’s motion. In the case of the playground swing
the rider’s pumping action involves movement of his or her body so that the
effective length of the swing is periodically altered. A more exotic example
is found with the pumping of O Botafumeiro by the team of priests. The
actual length of the pendulum is varied as the rope is periodically wound up
and wound down around the rollers high above the transept. In both cases,
the energy input periodically changes the effective length (parameter) of the
pendulum. These changes also provide a change in the effective gravita-
tional field on the pendulum bob due to the momentary forcing. The energy
of motion along the length converts to angular motion of the pendulum.
Both of these applications of parametric forcing will be discussed more
fully after the nonlinear pendulum has been introduced. For now, we
develop a simple model of a linearized parametric pendulum.

In complex systems, determination of the correct equations of motion
may be a daunting task. It is not always easy to specify, with precision
or confidence, the applicable forces in systems with several degrees of
freedom. Another approach, commonly termed the Lagrangian approach
after Joseph Louis Lagrange (1736-1 813) , may often be less perilous even
though the initial equations seem abstract.! The justification for this
method is based upon an optimization and may be found in texts on
advanced mechanics. See, for example, (Goldstein 1950) or (Chow 1995).
Here we simply provide the prescription for its use. Let us define the excess
of kinetic energy over potential energy as

L=T-v, (3.45)

where L is called the Lagrangian , T is the kinetic energy, and V is the
potential energy of the system. The system position is specified by generic
coordinates that form the set (92 and therefore the Lagrangian, and par-
ticularly the potential energy are both functions of the ¢; coordinates, The
kinetic energy will depend upon velocity coordinates (4:)- Because only

! Lagrange’s most famous treatise “Mécanique Analytique” contained not a single
diagram. Lagrange took pride in employing only “algebraic operations.” He went on to say
that, “Those who love Analysis will, with joy, ... be grateful to me for thus having extended its
field.” (Quoted on p. 333 in Dugas (1955)).
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The linearized pendulum with complications

energies are involved in the creation of the Lagrangian, it is relatively easy
to write the appropriate Lagrangian. The required equations of motion are
found by taking certain derivatives of the Lagrangian such that

d (0L oL
p; (a‘q',-) - (a‘q) =0 148

This expression gives one equation of motion for each of the coordinates.
We now demonstrate this approach with the linearized parametric
pendulum.

A typical parametric pendulum, whether a swing or a pumped incense
burner has a time varying length. Polar coordinates relative to the pivot
point are a good choice. The length of the pendulum may be represented by
r(#) and the angular displacement of the bob by 6(#). The Lagrangian for
the linearized pendulum becomes

L= f2+1 262 rez (3.47)
—2m 2mr mg 5 ) .

which, through use of Eq. (3.46), gives the equations of motion:

d(OL\ (or\ _ . .
E<5;>—<E)=>r—r0+g9—o

=== 0 + 2rrf 0 = 0.
dt(ag) (8(9)#7 + 2rrt 4 gr
The advantage of the Lagrangian approach becomes clear with the
appearance of the nonintuitive middle terms in each differential equation.
Our primary concern is the swinging motion as described by the second
equation. Division by r? yields

(3.48)

é’+2;é+§e=0, (3.49)

an equation very similar to that of the simple linearized pendulum. We
anticipate that the middle term will provide the forcing and thereby create
the increasing amplitude of the motion. The natural angular frequency
of the pendulum is given by wo = +/go/ro where ry is the unperturbed
length of the pendulum and 8o is the acceleration due to gravity.

For parametric pumping the optimum effect is achieved by pumping at
twice the natural frequency of the pendulum as shown by the path of the

bob of O Botafumeiro in Fig. 3.14.Therefore, a possible time variation of

the pendulum length may be expressed as

r(t) = (ro — %) + %cos 2uwyt, (3.50)
where Ar is twice the amplitude of the rope length variation which, in turn,
changes the effective field of gravity on the bob. Thus, the effective grav-
itational field becomes

Ar

5 403 cos 2wyt. (3.51)

8O) =g0—F=go+

Fig. 3.14

Schematic diagram of the path of
O Botafumeiro during a cycle.
(Reprinted with permission from
Sanmartin (1984, p. 940). ©1984,
American Association of Physics
Teachers.)
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Fig. 3.15
Time series for the angular displacement
as calculated by the computer
simulation.

Fig. 3.16
Oscillation amplitude for each pumping
cycle. Both sets of points are due to
mathematica] models, the circles
representing a more complex model that
yields an accurate representation of
actual motion of O Botafumeiro.
(Reprinted with permission from
Sanmartin (1984, p. 942). ©1984,
American Association of Physics
Teachers.)
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Pendulums less simple

Numerical solution of the equation of motion subject to the time variations
of r and g gives rise to the time series shown in Fig. 3.15.

As we will show, the frequency of the nonlinear pendulum is amplitude
dependent. Optimum forcing requires that the forcing frequency track the
pendulum’s natural frequency, and therefore optimum forcing of a non-

O Botafumeiro’s amplitude.
We now temporarily leave the question of forcing and turn to the dif-
ult i
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The nonlinearized pendulum

|
/ decreases with amplitude, a finding that counters Galileo’s original obser-
‘vation of approximate isochronism.

é 3.3 The nonlinearized pendulum

' We have seen that the linearized pendulum is a suitable model for many
| applications. But once the amplitude of oscillation gets past the point
5 where sin 6 = §, perhaps 10 degrees, the linearization approximation is no
! Jonger valid. Certainly the motion of O Botafumerio, with its amplitude of
| over 80°, requires modeling with the complete sinusoidal restoring force.
' Therefore it is necessary to return to the nonlinearized equation of motion,
. Eq. (2.1) for the simple pendulum. The mathematical machinery of linear
* differential equations and linear systems is no longer available to us.
- Solutions of nonlinear equations require a variety of less straightforward
' methods of solution, including power series expansion and, when all else
fails, numerical solution by computer. Furthermore, the harmonic oscil-
lator approximation of the pendulum is no longer true, and the various
analogs of the harmonic oscillator such as the LRC electrical circuit no
longer correspond to the large amplitude, nonlinear pendulum.

3.3.1 Amplitude dependent period

One of the most important differences between the linearized pendulum
and the nonlinear pendulum is that while the former has a constant natural
frequency, the period of the nonlinear pendulum decreases with increasing
amplitude. Galileo’s original hypothesis of isochronism is found only in an
approximation of this equation (sin 6 ~ ). More generally, the period of
the motion does vary with the amplitude. Derivation of this result is a
nontrivial exercise (MacMillan 1927). We begin again with the undamped,
unforced equation of motion,

ae g .
W+7sm0—0. (3.52)
Using
df
= 3.53
dg 7 dt, (3.53)

the equation of motion becomes

do d*e g

———dt = —=sin 6df. 3.54

dtdzzd lsme (3.54)
The integral of this equation—the so-called first integral of motion—is a
conservation of energy equation

2
(g) = 2—;gcos 8 + Constant. (3.55)
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The constant of integration may be
thereby yielding the following result,

dO\* 2 2E 2g
(E) =~COS€+\2—~

2
<§> = 2Tg(cos ¢ — cos o). (3.57)

This equation describes the behavior of the low €nergy pendulum in phase

Space (6,6) when o < 7. For very smalj amplitudes, the phase orbit is

approximately elliptical, as is the case for the linearized pendulum shown in

Fig. 2.5. For higher values of a the ellipse becomes horizontally Stretched.
1

Let us continue to 5o ve the differentia] equation. Use of the trigonometric
identity cosf = 1 — 2sin? (6/2) leads to the expression

%ﬂ =42 %[’sin2 (;) ~ 8in? (g)] (3.58)

We introduce two further variables, ¢ and k, with the substitutions

.0 ; .
smi = smgsm v and k? = gjp2 (g)

An integral €quation is no

W formed in which the variables and ¢ are now
Separated:

T ————————
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The nonlinearized pendulum

variable ¢ is equal to 7/2. Therefore the period of the motion is

/2
T:4\/Z/ #
£Jo 1~ k2sin (o)

The integral in the above expression is called an elliptic integral of
the first kind. Its value was first calculated by the French mathematician
Adrien-Marie Legendre(1752-1833). Legendre worked extensively on
elliptic functions and elliptic integrals for over forty years culminating in
his book “Traite des fonctions elliptiques,” published in 1830 (Hellemans
and Bunch 1991). The integrand may be expanded according to the
binomial theorem:

(3.61)

(1 —K*sin? (p))~1/% =1 +%k2 sin ¢ + G—'—i)k“ sino -
1:3-5-Qn=1), .,
2 sin? ... )
I SIL g et (3-62)
and integrated term by term. For the integration we use the formula
/2 1-3.5--.2n—Dr
s 2n
= o~ 3.
/0 e e S BT PR (3.63)

and the previously defined value for k to obtain the final value for the
period:

T 27r\/§ [1 + (%) it (g) n (;—3 in® (g) s J (3.64)

The graph of period versus angular amplitude is shown in Fig. 3.17. Note
that when the amplitude is zero that the period is exactly equal to the period
determined from the linearized version of the pendulum. As the amplitude
approaches 7 radians, the bob approaches verticality and the factor /2
approaches /2. The series now diverges and the period becomes infinitely
large, as expected. This behavior is treated as the second case.

For O Botafumeiro with its angular amplitude of over 80°, the period of
motion is longer than that found from a calculation that assumes a small
angle of oscillation. One wonders what Galileo would have discovered if he
had been sitting in the cathedral in Santiago de Compostela rather than
(reportedly) sitting in the cathedral at Pisa. Would he have observed the
difference in the pendulum’s period as the team of priests gradually built up
the amplitude of the censer’s motion? Would his pulse have been a suffi-
ciently accurate timer to quantify the difference? From Fig. 3.17 it is
apparent that the period for an amplitude of 80° is about 15% more than
that of the small amplitude approximation. With O Botafumeiro the for-
mula for the period is not exactly applicable because of a variety of other
effects. Use of the small amplitude formula for the period of oscillation
leads to 7= 9.1 seconds. Measurements taken from a graph found in
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Undamped oscillations
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Fig. 3.17
Period of oscillation versus amplitude.
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in, 1984) suggest that for maximuy
seconds, a 12% difference. It seems unlikely that

attributed much significance to either a12% or 15% change.?

0 = A4 sin wyz. (3.65)

wherewy = /g/] = . Such is not the case for

the nonlinear pendulum. In
order to gain some understanding we parti

ally solve the €quation of

d?9 2. ;
77 = ~wWsin(4sinwi). (3.66)

The outer sine function may be expanded such that t

he angular accelera-
tion includes powers of the trial solution:

- . A sin wr)3 i d
%f:—wz[Asmwt—\( slsn!w) +\(A515n'wt) J 3.67)

Each of the powers of the trig functions can be shown to contain 2 har-

monic that corresponds to that particular power. Therefore there are
sinusoidal terms in the time series with frequencies that are odd harmonics
of the fundamental frequency, w. If the amplitude of oscillation is relatively
small we might only keep the first two terms in the Power series expansion
and therefore the next approximate trial solution might have the form,

0 = Bsinwt + Csin 3wy, (3.68)

pendulum is oscillatory, it is no longer describ
motion of a single sinusoidal function. A ¢

ileo would have not been inclined to regard any
difference ag credible—at least for an ideal pendulum, Isochronism may have been 3 matter of
faith as well as of imperfect observation (Drake 1978).

Galileo would have

y
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detune the pendulum, and thereby lower its resonant frequency from that
of the originally tuned driving frequency. The forcing goes out of step with
the momentary resonant frequency. As the forcing becomes further out of
synchronization with the pendulum, the pendulum’s amplitude of motion
will diminish back to zero. The phenomenon gives rise to a periodic
amplitude modulation of the pendulum’s motion, as shown in Fig. 3.18.
Therefore the rider on a swing must automatically account for the varying
response by adjusting her pumping rate to achieve maximum response. In
essence, the rider’s efforts form part of a feedback loop with the swing, a
phenomenon known as autoresonance . Similar considerations hold true
for the pumping of the large amplitude oscillations of O Botafumeiro. The
team of priests form a feedback loop such that their pumping frequency
must slow as the amplitude increases.

Let us now consider the case for which the pendulum has just sufficient

energy to reach an inverted position.

Case II: E=2mgl. For this condition, the expression for energy
simplifies considerably. We start with Eq. (3.57) and using the same tri-
gonometric substitution, obtain the result,

g\’ 4g Y
(E) _7<1 i @) (3.70)

which may be simplified to

db g 4
i 2\£cos (5) 3.7

Therefore the time interval 7 between the pendulum being at the bottom of
its arc #=0 and being at some finite angular displacement, 6, is found by

integration,

11?9 ! 0 =
==,/ —df = /= —+—]1. 72
t 2\/;/0 sec2d9 \/;ln[tan(4+4>J (3.72)
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Fig. 3.18
Response of the pendulum to forcing at
its small angle resonant frequency. For
larger amplitudes, the forcing frequency
is increasingly different from the
pendulum’s natural frequency and the
forcing becomes counterproductive.
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Fig. 3.19
Phase diagram for a pendulum with just

enough energy to reach the upright
vertical position.

Pendulums less simple '

The pendulum approaches verticality as 6 approaches 7 radians
and therefore the time interval becomes infinite, We expected this result
from the discussion of the previous case. Eq. (3.71) can also be used to plot
the trajectory of this special orbit in phase space as shown in Fig. 3.19 when
the phase orbit passes through 6 =+r. This is a unique orbit since it
characterizes the pendulum’s behavior at the critical energy. Note that
there is a discontinuity in the derivative of the phase orbit at § = +r. This
special phase orbit is called the Separatrix; it marks the boundary between
oscillatory and hindered rotary motion of the pendulum.

Case III: E ) 2mgl. The total energy is
1 2
E= 5ml2 (—) +mgl(1 — cos 6). (3.73)

The angular velocity term may then be isolated such that

d\* 2E _g Y

(3.74)
mi? / 2
Therefore
do 2F )
SR Kl —k2gin2”
7 lez 1 — k2sin 5 (3.75)
where

_ [2mgl
k= ”T' . (3.76)

The differential equation is inverted and put in integral form. The integral
over angular displacement, from 0 to , describes motion for one half an
orbit and therefore the integral gives the time for one half rotation. The
period of the motion is then double this time. The integral is

2mi2 T d(é
t=\/%l/ Q@ 3.77)
0 4/1—k?sin*4

Finally the period of the motion may be expanded, as before, to give

2mi? N o, 1R,

The motion is that of a hindered rotation—faster at the bottom and slower
atthe top. If Eis very large compared to the critical energy of 2mgl, then the
expression for the period reduces considerably. Suppose E = Nmgl where
N is a very large number; then k becomes very small and we can ignore all

i
i
i
¢




The nonlinearized pendulum

but the first term in the expansion. The period then behaves as

{21
T=mn g’ 3.79)

which approaches zero for large N. The behavior of the period over the
entire range of energies is sketched in Fig. 3.20.

3.3.2 Phase space revisited

In Chapter 2 we introduced phase space as a means of visualizing the
totality of the pendulum’s motion. With the nonlinear frictionless pen-
dulum phase space becomes more complex. Phase space naturally divides
into two parts that correspond to the two regimes of energy, E < 2mgl, and
E>2mgl, as indicated by the boundary region (critical energy) shown in
Fig. 3.19. For E < 2 mgl, (inside the critical orbit or separatrix) the phase
orbit is somewhat elliptical because the pendulum is reasonably approxi-
mated by its linearization. However, for larger energies that are still less
than the critical energy, E=2mgl, the ellipses become slightly squashed
even as they become bigger. At the critical energy, the phase orbit
(separatrix) has a discontinuity in slope at § = 4, where the period of the
pendulum becomes infinite. Now, the pendulum’s motion in time is always
clockwise around the subcritical orbits. For supercritical orbits, the motion
will just continue to the right as the angular displacement grows mono-
tonically. Thus, the flow of the motion may be indicated by arrows, and for
the critical orbit, we may think of arrows going into and coming out of the
points where 6 = 47 and § = 0. Because some of the arrows are going into
these points and others are pointing away, these special points are called
saddle points, and the arrows indicate whether the pendulum tends to g0
toward or away from the saddle point along the particular orbit. Traject-
ories that point toward the saddle point are called stable and those that
point away are called unstable. Once the energy is greater than E—= 2mgl,
then the motion becomes that of a hindered rotor and the pendulum’s
motion is no longer confined to a finite region of phase space. (A non-
hindered rotor would have a constant angular velocity 6 and its phase
portrait would be a horizontal line.)

The addition of damping creates a new scenario. Now the motion of
the pendulum decays and, for small amplitude oscillations the ellipse
becomes a spiral toward the center as the motion dies away. For larger
amplitudes the motion also decays and therefore the final state of any of
the pendular motions is one of rest. The motion is always attracted to the
center and therefore the center is called an attractor. Each center with
coordinates [f = 2nm, 6 = 0] is an attractor, and which attractor the pen-
dulum motion goes to depends upon the region of phase space from
which the motion originates. Thé attractors alternate with the saddle points.
The region of phase space that corresponds to a particular attractor is
called its basin of attraction. Figure 3.21 illustrates a typical phase space
for the damped pendulum.
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Fig. 3.20

Graph of period versus the energy of the

pendulum. The vertical line represents
the critical energy.
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Fig. 3.21

Phase space diagram for the damped
pendulum. The shaded and unshaded
regions are basins of attraction. All
points within a particular region are
attracted to the central foca] point within
the basin. (From (Baker and Gollub
1996). Reprinted with the permission of
Cambridge University Press.)
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Fig. 3.22

A pendulum’s response to change in
forcing frequency. The response is
different depending on whether the
forcing starts well above the resonance
or from well below resonance as
explained in the text.

Pendulums less simple

atives of the coordinates vanish. For example, a typical second order
differential equation for the damped pendulum

d?0 a9 g .
dTZ+2fyd—l+7sm9_0 (3.80)
can be rewritten as two coupled first order differentia] equations
d_@ =20 — gsin 6
dt l (3.81)
a
dr

in the variables 6 and 4. The fixed points occur when the left side derivat-
ives are zero at coordinates [0 = nr, § = 0]. These are the saddle points
n=o0dd) and the attractors (n=even). The arrows in Fig. 3.21 indicate
whether the fixed point is stable. :

Finally, if a small amount of constant or periodic forcing is added to a
damped pendulum, an equilibrium state will be reached in which the added
énergy from the forcing just compensates for the energy dissipation.
Equation (3.80) is then augmented by a forcing term (), such that

a9 4 o

a7 T g+ Gsing = Ko, (3.82)

The phase space orbit will again be a closed curve, although not neces-
sarily elliptical in shape. The closed orbit s sometimes called a limit cycle.



The nonlinearized pendulum

f anharmonicity and the negative sign for the nonlinearity indicates that
* the equivalent linear spring has been effectively “softened” such that the
~ natural frequency is lowered, and the peak response is shifted to the left of
the small amplitude natural frequency. (A positive sign indicates that the
spring has “hardened” with a commensurate shift to the right in the
response peak.) A decrease in forcing frequency from above the small
amplitude frequency follows the upper curve, whereas an increase from
below follows the lower curve. But when each curve reaches its endpoints
as indicated by the vertical dashed line the pendulum’s response to forcing
will change abruptly and move to the correspondingly opposite curve.
- Thus there is hysteresis in the response curve.

On the other hand, strong nonresonant forcing—at a frequency different
from the natural frequency—will precipitate a host of motions whose
phase trajectories are complex. Some of these motions are periodic as in
Fig. 3.23 and, as we will see in Chapter 6, some of the motions do not repeat
and are therefore called chaotic.

3.3.3 Anelectronic ‘pendulum’

Earlier in this chapter, we showed that the undamped, unforced, linearized
pendulum was equivalent to a simple LC circuit. With the addition of
damping of the pendulum, a resistance R was added to the LC circuit.
Finally, the electronic circuit was augmented by a forcing voltage and the
corresponding differential equation for the circuit was given by Eq. (3.23)
which, in turn, is the electronic analog of Eq. (3.38) for the pendulum. In
the same spirit we now present an electronic analog of the nonlinear,
damped, forced pendulum, Eq. (3.82). It will be evident that the existence
of nonlinearity adds considerable complexity.

Consider the apparently simple circuit depicted in Fig. 3.24. Funda-
mentally, this is an electronic integrator (see any standard electronics text
such as (Sedra and Smith 2004)) to which is added a voltage controlled
oscillator (VCO) subcircuit whose complete schematic is given in Fig. 3.25.

To analyze the overall operation of the simulator, we begin with the
VCO. Operational amplifier 4; is configured as an integrator, so its output
is governed by the usual expression

Vi = Vy dt, (3.83)

i
(20 k)(0.1uF) /

where Vy is the output of the multiplier module. Notice that ¥y will be the
product of the input voltage and either +8 V or —8V, depending on the
state of switch SWI1. As can be seen in the figure, the other voltage-
controlled switch, SW?2, is set by the polarity of the input voltage.

For the purpose of this discussion, let us take a positive input voltage.
SW1 and SW?2 are set as shown in the diagram. The input to 4, will be
+ 8 X Viy; hence according to Eq. (3.83), its output will be a linear ramp

* See (Jackson 1989, p. 310).
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Fig. 3.23

Phase plane diagram of a pendulum
whose period is twice that of the forcing
period. Note that the boundary
conditions on the angle are periodic and
therefore there are discontinuities at
0=+m.
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Fig. 3.24

Single op-amp circuit which is an
electronic analog of a driven pendulum.
The block labelled VCO is a voltage
controlled oscillator (note the
orientation of the input and output
terminals).
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Fig. 3.25
Schematic of the VCO subcircuit. The
block marked with an X is a voltage
multiplier module. SW1 and § W2 are
voltage-controlled switches.

Pendulums less simple

with slope —500 x 8 x Vin (V/s). This is fed to the top node of the 3 k€)/
24k resistor chain; the bottom of the chain is for the moment at +8V.
Note that the point between the 3k resistor and the 24 k) resistor wil]
reach zero volts when the top of the chain drops to exactly -1V, Therefore,
when the negative-going ramp from amplifier 4 reaches —1 V, switch § w1
will flip, now applying —8V to the multiplier and causing the slope of the

will continue until it reaches +1V, at which point SW1 will flip back to its
original position as depicted in Fig. 3.25.
To summarize then, the output of A; will be a sawtooth voltage wave-

earlier remark, the reciprocal of " the slope of the output ramp is
(4000 x ¥;,)™" (s/V) and so the period is 2 x 2 x (4000)~' = 1 ms for an
inputof 1 V., Altering the input voltage correspondingly changes the period
(or frequency) of the oscillation.

Operational amplifier 4, is a simple inverter which, combined with the
action of SW2, guarantees proper operation of the VCO whenever a

denotes a subcircuit whose purpose is to convert the sawtooth waveform to
a sinusoidal waveform. Typically, such a function can be achieved by
means of an array of resistors and diodes.*

Taking all these facts together, the VCO can be characterized by the
functional relation

Vout = asin (27rk/ Vl-ndt>, (3.84)
where, for the component values used here’, & = 1000 Hz/v.

4 See, for example (Sedra and Smith 2004, fig. 13.31, p. 1204).
5 The value of the amplitude coefficient ¢ depends on the internal details of the sine

converter circuit. A typical value might be approximately 0.7. For comparison, the amplitude
of the fundamenta] F ourier component of a Symmetric triangle waveform is 8/m?=0.8 1.

— e
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Turning now to the first circuit Fig. 3.24 and noting that the inverting
input is a virtual ground, it is apparent that the conditions at the summing
point of the op-amp dictate

Vb d Vout Vout VCOout
ML L W ) 3.85
B dt R R, (3.85)

If we define 6(2) = 27k [ VCO;, dt, then noting that VCO,, is the same
as Vouts

1 df
i Vout (3.86)
in which case Eq. (3.85) becomes
2 : ;
C d-<o 1 do asm9:_ﬁ (3.87)

2wk d? T omkRa T R, R’

which has the same form as the equation for a driven, damped, pendulum.
It is sometimes useful to simplify Eq. (3.87) by choosing a normalizing

time
* = [ 2”’“’Jz (3.88)

CR,

i |1 R |;. . . VR
9+[§ WJ0+SIn9__7Rb’ (389)

where the dot indicates differentiation with respect to ¢*. Clearly, the right
hand term assumes the role of a normalized torque.

The results of a PSpice® simulation of this circuit are shown in F ig. 3.26.
Because of the negative sign on the right-hand side of Eq. (3.89), a negative-
going ramp in bias voltage ¥, corresponds to a positive applied torque. The
upper trace is the voltage ¥, which is proportional to the phase velocity.
Thus the figure illustrates the circuit equivalent of a pendulum with slowly
increasing torque. As the critical value of bias is reached, the pendulum just
goes over the top, after which it rotates with the expected fast-slow
modulation—a hindered rotational motion.

As this analysis demonstrates, the analog circuit of Fig. 3.24 will rep-
licate the dynamics of a pendulum, but at a much faster time scale—
milliseconds in contrast to seconds. The output voltage is proportional to
the time derivative of the pendulum phase angle according to Eq. (3.86).
The various circuit components can be selected to give any desired equi-
valent values of pendulum parameters, including the Q (see Appendix A)
which for light damping turns out to be

0 =R/ ZW;‘ZC. (3.90)

® PSpice is software for simulating electronic circuits and is a product of Cadence Design
Systems, Inc. Further information about PSpice may be found at www.orcad.com.

in which case
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While this electronic analog is more complex than the LRC circuit for
the linearized pendulum, there is an even more complex electrical analog
which we describe in Chapter 9. This second electrical analog to the non-
linear pendulum is a superconducting, quantum mechanical device known
as a Josephson Junction.’

3.3.4  Parametric forcing revisited

We have already provided a simple model of parametric pumping for the
case of the linearized pendulum. Let us now look at some of the compli-
cations provided by the nonlinear pendulum for the self-pumped swing and
for parametric pendulums such as O Botafumeiro.

Pumping a swing

In the case of the playground swing , the rider’s pumping action involves
movement of his or her body so that the effective length of the swing is
periodically altered. One method requires the rider to alternately stand and
squat on the swing such that the effective length of the swing shortens and
lengthens periodically. The other common method is for the rider to
remain seated but to alternately rock his body, again so that the effective
length of the swing changes periodically. Variations on either of these
methods make use of pulling and pushing on the ropes of the swing to
further enhance the motion. A further distinction can be made between
methods of (a) initiating the motion, and (b) enhancing and maintaining
the motion. In the last three decades a flurry of scholarly analysis has
appeared on the physics of pumping a swing. Examples are given in
the following references: (Tea and Falk 1968; Siegman 1969; Gore 1970,
1971; McMullan 1972; Walker 1989; Case and Swanson 1990; Wirkus
et al. 1998).

In 1968 Tea and Falk of City College of the University of New York
analyzed the case of a standing rider pumping the swing by alternately
standing and squatting on the swing (Tea and Falk 1968). This activity
periodically changes the center of mass of the swing and thereby its
effective length in a manner very similar to that shown in Fig. 3.14. The
swing may be treated as a simple pendulum with all its mass concentrated
at the center of mass. The rider is squatting when the swing descends and
then quickly stands as the swing passes through its lowest point. He can
choose either to repeat the pattern on the return half of the cycle or simply
to remain standing until the beginning of a new cycle.

Energy considerations help us discover the effects of the pumping action.
In going from a squatting to a standing position at the point of lowest arc,
the force provided by the pumper is radial, and therefore does not provide
atorque that changes the angular momentum of the swing and rider. Thus,
the angular momentum is conserved, while the center of mass and therefore
the effective length of the pendulum are changed. Conservation of angular
momentum prescribes that the decrease in length is compensated by an
increase in angular velocity. In turn, the increased angular velocity leads to
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a rapid increase in kinetic energy at the bottom of the arc that converts to
an increase in potential energy at the maximum height of the swing.
Therefore the objective of increased amplitude of the swing is achieved by
the pumping action. Following (Tea and Falk 1968) we develop an equa-
tion for the increase of the swing’s angular amplitude as a result of the
pump action.

Assuming negligible friction, both angular momentum and energy are
conserved at various points in the motion. In making the transition from
the squatting to the standing position, angular momentym is conserved as
follows:

mljwy = mPwsg, (3.91)

where w4 and wp are respectively the angular velocities before and after the
rider stands up and /, and /), respectively, are the effective lengths of the
pendulum before and after the rider stands. Similarly, total energy is
conserved prior to the rider standing, and then an increased energy level
(from the work done by the rider) is obtained after the rider stands. That is,

1 1
mgly(1 — cos bp) = Engwi, and mgh(1 — cosf;) = Emlfwg. (3.92)

With some algebraic manipulation it is possible to show that these equa-

tions lead to an increase in the maximum angular displacement of the
swing:

13 _ 13

cosfy — cos b = (0 s .

h

>(1 — cos ). (3.93)

Since lo > Iy the maximum displacement is indeed increased by the pump
action. Eq. (3.93) can be rearranged to generate a map of 6, in terms of
increasing @ values. Figure 3.27 (amplitude versus no. of cycles from
Eq. (3.93)) shows the increase in the swing’s angular amplitude as a
function of the number of pumping cycles, assuming that the center of mass
shortens by 10% during each pump action.It is apparent that the pumping
action becomes more effective as the angular displacement increases. (The
difficulty of getting the swing started is well known to swing riders.)

Amplitude 0 (degrees)
W A L O
S O O O ©
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(=]
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0 2 4 6 8 10 12 14 16 18
Number of pumps

Fig. 3.27
Amplitude versus number of pumps
using Eq. (3.93).
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The amplitude increases as a result of the rider standing up. Is this
amplitude increase lost when the rider squats? While some amplitude is
lost, the fact that the squatting occurs at the extremes of the swing motion
means that the change in potential energy of the center of mass is less than
during the standing motion at the bottom of the arc and therefore the
energy change in standing is less by a factor of sin 6.

It is interesting to determine how much energy is required of the rider
during the action of standing. The work done is equal to the change in
kinetic and potential energy as the center of mass goes from point A to
point B. Therefore the expression for the work is

Ip
Was=— [ m(g+ w?r)dr. (3.94)
Iy
Again, we use conservation of angular momentum through the rising
motion such that

w=-"4y,. (3.95)

Substitution of this result into the expression for the work and carrying out
the integration eventually leads to

(3.96)

Wap = —mg(ly — Ip) [1 + 1 . coril ¢ lB)}

I3

The work done increases as the swing goes higher because of the cosine
factor, again a common experience. This increased work is due to greater
centrifugal force at the bottom of the arc from the higher velocity of the
swing. The force and therefore the work done in rising requires an
increasingly greater expenditure of energy by the rider. On the other hand,
the graph in Fig. 3.27 suggests that this extra work also produces larger
increments in the swing’s amplitude.

This simple analysis applies to both standing and sitting pumping
although in the latter case the change in the center of mass is smaller and
therefore the predicted change in swing amplitude will be less for each
cycle. In this analysis, we have not included frictional effects that might be
found in the suspension point of the swing or in the surrounding air. We
expect, however, that these effects are relatively small and that our dis-
cussion gives a reasonable picture of the underlying physics. In 1969,
(Siegman 1969) Siegman of Stanford University showed that the model of
pumping the swing by changing its center of mass is equivalent to the
action of the common notion of a parametric pendulum; namely a pen-
dulum that is energized by the periodic variation of the vertical position of
its pivot point. The connection of the pumped swing with parametric
devices opens new vistas of related phenomena (Strarrett and Tagg 1995;
Louisell 1960).

In 1990, Case and Swanson of Grinnel College took a somewhat dijf-
ferent approach (Case and Swanson 1990). They modeled the rider and
swing as a compound pendulum, with a massive bob, m;, at the rider’s
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position on the seat and the rest of the body by two other bobs, m;, that
account for the extension of the body due to the rest of the body parts—
arms, legs, head and so on. For simplicity, the two other bobs of equal mass
are represented as dumbbells that are positioned symmetrically about the
seat of the swing, as shown in Fig. 3.28. Using thé notation in this figure,
the Lagrangian for the system is, to within a constant, as follows;

1 dp\? dp do\?
L=T-V= z(ml +2m2)lf <£) —f—mﬂ% (—d)—l-—) +(my +2M2)11gCOS o.

dt dt  dt Fig. 3.28

(3_97) Person on a swing modeled by a pair of
point masses.
Our interest is in the motion of the swing itself. The motion of the rider,
relative to the position of the swing seat, is that of a periodic dumbbell and
satisfies an equation of the form

0 =01 + 0y coswt, (3.98)

where w is the angular frequency of the pumping. The “at-rest” angle is 6,
and the amplitude of the variation in orientation of the “dumbbell” is Bo.
Because the pendulum is nonlinear, the resonant frequency of the swing
decreases as the amplitude of the motion increases. Therefore the rider will
naturally vary the pumping frequency in order to match the resonant
frequency of the swing. Lagrange’s method provides the equations of
motion for the swing;

doL OL . , .
Tog 05 [(m1 +2m2)1 + 2ma B3] + [y + 2my) g sin ¢ + 2my26 = 0,

(3.99)

with substitution from Eq. (3.98). The result is the equation of motion for a
harmonically driven, undamped, nonlinear, pendulum,

[(m21 + 2m2) + 2myB1 G + [my + 2my) 11 g sin ¢ = 2umy B6y cos wr.
(3.100)

While this equation looks complex, its essence is expressed by
g + Bsin ¢ = ycoswt,

which is simply an undamped pendulum with sinusoidal forcing. The
rotational motion of the dumbbell provides the pumping action and
therefore increases the amplitude of the swing. We emphasize that the
3 period of the pendular motion will increase with amplitude since the lin-
earization approximation for small angle is not applied in this equation,
and therefore the rider will need to decrease the frequency of the pumping
action as the swing’s amplitude increases.

Since the model uses a symmetric dumbbell, the center of mass of the
swing is always at the position of the central mass, and therefore the
parametric mechanism described earlier—periodically varying the center
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more rapidly at larger angular displacements.

Finally, Wirkus et a]. of Cornell university (Wirkus et al. 1998) incor-
porated the work of both F alk and Tea, and Case and Swanson to deter-
mine an optimum mix of pumping techniques, They concluded that the
rider should begin with sitting pumping, and progress to standing pumping

O Botafumeiro: A simple model

Like the self-pumped swing, O Botafumeiro is a parametric pendulum
whose length is periodically shortened. This pumping modifies the effect of
gravity such that the downward force on the censer is increased as the
pendulum is shortened, and decreased as the pendulum regains jts full
length. We begin with a nondissipative Lagrangian L, then develop
equations of motion for the conservative System, and finally, insert the
bumping and dissipative effects to complete the equations of motion. The
Lagrangian for the appropriate conservative system is

E=T-F= %miz +§lmr29'2 — mgr(1 — cos §). (3.101)

The censer is approximated by a point mass (m) and the radia] distance r is
asured from the pivot to the center of mass of the cengser. The equations
of motion follow from standard operations on L,

d (8L\ or . d (8L\ oL ‘

that lead to radial and tangential components, respectively, of the motion
of the pendulum, These computations yield the following equations of
motion,

i — mr’g +mg(l —cosh) = ¢
- . o (3.103)
mrQ + 2mrig 4 mgrsin @ = (),

The first equation is the radial equation and includes a centrifugal term
mr?0, whereas the second equation is the tangential equation and describes
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the angular acceleration and the torques causing that acceleration. (The
term 2mr7f is due to Coriolis force, which is discussed in the next chapter.)
We focus on the tangential equation and add a dissipative torque that is
proportional to the square of the tangential velocity, vy = rf. For an
extended object moving swiftly in air, the frictional force is typically given by

1
Feriction = 5p45Chp V2. (3.104)

The friction parameters are the density of air py, the equivalent surface
area that the censer presents as it moves through the air S, and the drag
coefficient of the censer Cp. The latter two parameters are provided by
Sanmartin (1984) as well as other necessary parameter values. See the table
below. The modified equation of motion then becomes

. | .
mr?0 + 2mri6 + 5 p4SCp(r6)*r + mgrsin 6 = 0. (3.105)
Dividing Eq. (3.105) by mr? yields a new equation
0+2i6/r + QIE paSCpb*r + g/rsin6 = 0. (3.106)

The pumping action is now added. We note that g is affected by the radial
acceleration of the censer and therefore both r and g are functions of time.
Figure 3.12 shows the approximate path of the censer as caused by the
pumping action of the tiraboleiros. The period of the pumping is twice the
period of the pendulum and the time variation of the pendulum length may
be crudely modeled by

A
M= (rn-= +£costt. (3.107)
2 2
The variation in r(f) modifies the effective gravitational field as
g)=go—7 = go+ %wﬁcoswﬂ. (3.108)

The parameter values provided by Sanmartin (1984) are given in the
following table.

iy 1.29 kg/m?

5 m(l/3)* = n(1.2/3)* = 0.503 m?
Cp 0.59

m 57 kg

Fo 20.9 m

Ar 29 m

wr(0) 1.37 rad/s (zero amplitude)

8o 9.8 m/s?

wo V&/ro = 1/9.8/20.9 = 0.685 rad/s
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Fig. 3.29

Time series of the angular displacement
3 of O Botafumeiro based upon the model
| described in the text.
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As the amplitude changes the tiraboleiros need to modify the amount of
pulling on the rope. This factor is more difficult to model. Relatively simple
feedback mechanisms tend to lead to Instability, and therefore we do not
carry the process further. The resulting simulation shown in Fig. 3.29

Wr—

the model the amplitude is considerably less. Furthermore the amount of
forcing in the model is Ay — 0.9 which is only about one third of the actual
forcing stated in the table. Unfortunately, the model becomes unstable for

ited by the simple model] is gratifying, and modest deviation in the para-
meters’ values from those given in the table yield results that more closely
approximate the buildup in the real pendulum.

As well as the noted discrepancies with the motion of the rea] pendulum,
we also note that the physical complexity of O Botafumeiro is considerably
simplified in the model. The mass of the rope is a significant factor at
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A pendulum of horror

15.7 kg. The pendulum is not rigid and is perhaps more properly treated as
a double pendulum. The thickness of the rope at 4.5 cm is also important
and contributes to friction effects beyond those modeled for the censer
alone. Sanmartin has included many of these effects in his analysis and
consequently achieves a better agreement of theory and experiment.
Nevertheless our simple model adequately represents many of the features
of O Botafumeiro, one of the world’s most unique pendulums.

At this point we defer further technical analysis of the nonlinear pen-
dulum until Chapter 6 in which we discuss' the chaotic pendulum. Let us

end this chapter with a literary note.

3.4 A pendulum of horror

In 1842, the first American author of tales of horror, Edgar Allen Poe
(1809-1849) wrote a short story entitled, The Pit and the Pendulum (Poe
1966). Poe’s stories often contained a strong element of terror, in part,
because he left many of the details quite vague, just as a standard technique
of psychological terror is to keep the victim in ignorance as to his ultimate
fate. The Pit and the Pendulum does exactly that to both the reader and
the protagonist. The main, and practically only character, whose name we
never know, is brought as a prisoner before the court of the Spanish
inquisition in Toledo, Spain. The trial is recalled by the prisoner during a
confused dreamlike state. Subsequently, he is carried into the bowels of the
earth and flung into a damp and dark dungeon. He attempts to investigate
the physical condition of his cell but exhaustion forces sleep upon him.
When our hero awakes, he is tied to a low cot with only one hand free with
which to feed himself the spiced meat that is mysteriously laid beside the
cot. (Fig. 3.30) He now notices a large pendulum high above the cot and
observes the start of its oscillations, However, the presence of rats
attempting to steal his food distracts his attention from the pendulum.
Meanwhile the pendulum continues to swish by overhead and, with each
arc, the pendulum bob, now seen to be in the shape of a large sharp metal
blade, comes ever closer to his person. The descent of the pendulum is
tortuously slow giving our hero a chance to assess his situation. The strap
by which he is held to the cotis a long single piece that is wound many times
around his body. His first thought is that the pendulum might eventually
cut the strap and allow him to free himself before he suffers his apparently
inevitable fate. But, to his chagrin, he notes that the only place where the
strap does not cover his body lies in the path of the pendulum. Therefore he
needs to devise some other method of regaining freedom of movement.
The story continues as the pendulum draws ever closer with increasingly
larger amplitudes for its swing. Like O Botafumerio, this pendulum can
also be heard to make an ominous swishing sound as it describes its
increasing arc. As the pendulum nears the prisoner’s body he estimates the
total range of the pendulum’s motion to be about thirty feet. Given that the
room itself is only about forty feet high, this pendular motion is of very
large amplitude, again similar to O Botafumerio. At this point we refer

Fig. 3.30
Depiction of the victim in Poe’s story
“The Pit and the Pendulum.” This
drawing is actually a political cartoon
drawn by Udo Keppler in the 1920s,
highlighting the effect of inflation during
that decade. Note “Cost of Living” on
the blade/bob. (Political Cartoon
Collection, Public Policy Papers,
Department of Rare Books and Special
Collections, Princeton University
Library. Reprinted with permission.)
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readers to the original story in order to learn the fate of the prisoner.
However, it is of interest to ask whether Poe’s tale is realistic. Does it seem
likely that the inquisition would have used something like a motorized
pendulum in this context? The answer is probably no. The time frame of the
story is not clear but we may impose some limitations. The Spanish
inquisition ended in the early nineteenth century and the story itself
refers to capture of the city by a certain French General La Salle, Perhaps
this allusion is to the Napoleonic wars, but the time could also be much
earlier. Scholars (LLorente 1823; Lea 1907) suggest that while torture was
a standard and accepted means of learning truth in matters both secular
and religious, it was not likely to be used gratuitously by the inquisition
once sentence had been passed. And, in the story, there had been a trial and
a sentence pronounced. Furthermore, instruments of torture were fairly
simple and direct. A driven pendulum that would slowly and noiselessly
descend, and slowly increase its amplitude of motion, all inside and abovea
small dungeon, is relatively complex and hardly worth the effort even if
craftsmen could be found to build such a machine. Therefore Poe’s story
is somewhat unrealistic in this regard. Some believe that the inspiration
for Poe’s tale was actually a large swinging bell that Poe had observed.
Nevertheless, realistic or not, the image of a sharp-edged pendulum makes
it frightening. It is the regularity and inexorability of the pendulum’s
motion that contributes to the climate of terror found in this story. The
pendulum’s periodicity, that is so important in other contexts, is here made
to serve the cause of literary suspense,

With Poe’s pendulum we conclude our discussion of the conventional
classical physics of the pendulum. This discussion, beginning with the
undamped linearized pendulum of the previous chapter, and pro gressing in
complexity to the nonlinear pendulum of this chapter, will help our
understanding of the pendulum as we meet more of its facets in the fol-
lowing chapters. In the next two chapters, we discuss important applica-
tions of what are, for the most part, linearized pendulums. The nonlinear
pendulum is especially important for understanding the chaotic pendulum
(Chapters 6 and 7) and the quantum pendulum (Chapter 8).

3.5 Exercises

1. Consider the effect of consrant forcing of the damped driven pendulum. Start
with Eq. (3.18) and let the forcing term be simply Y.

(a) Write the new equation of motion.

(b) Oneway to think about this system is to make the force (aside from friction)
acting on the pendulum to be F — ~mglsind + Y and find a “potential”
V = — [ Fdf. Write the expression for the potential and sketch its graphasa
function of . Because of the shape of the graph this potential is sometimes
called a “washboard” potential.

If the constant torque is slowly increased from zero the pendulum bob rises (with
negligible angular velocity) up to the critical angle of 90°. In this regime the local
minima in the washboard potential will keep the pendulum bob from moving out
of the local minimum. At 0. = 90° the torque is at its critical value of Y, = mgl.

first
by k-
stitu
Con
Eq.
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The washboard potential is now sufficiently steep that the local minima disap-
pear and the pendulum bob can fall out of the local minimum, accelerate and
rotate almost freely. Thus there is a sudden jump in the pendulum’s angular
velocity. (The rotation is slightly hindered by the bumps in the washboard,
corresponding to the pendulum slowing as it goes over the top of its motion.) If
the constant torque is now gradually decreased, then the pendulum continues
the hindered rotational motion because it now has sufficient momentum. Even
at relatively low values of the torque where, for increasing torque, the pendulum
was previously stationary, it now still rotates. The phenomenon of different
behaviors with increasing and decreasing torque is another example of
hysteresis, and a graph is shown in Fig. 3.31.

. (a) Substitute the solution given by Eq. (3.6) into Eq. (3.2) and thereby verify

Eq. (3.6). (b) Determine the phase angle ¢ in terms of the initial angle #(0) and the
initial angular velocity, 6(0).

. With the forced, damped linearized pendulum, the amplitude of the steady state

part of Eq. (3.19) F/y/4v2w? + (w — w?)? varies with both frequency w and
)

damping strength -y. Sketch a few curves of Amplitude versus w, each being at
different values of damping strength. (See the Appendices for samples of such
curves.)

. Physical systems that are linear and dissipative all respond to periodic forcing as

indicated in the curves developed in exercise 3. Such curves may be characterized
by a “quality” factor Q thatis calculated in the following manner. First, we note
that the “power” of the pendulum’s response is proportional to the square of
the steady state solution time series, F2/((4y*w?) + (w§ — w?)?). Find the value of
the power P(wy) when w = wy. (For light damping, this value of the power
should be very close to the maximum value.) Now observe that when
4y%? = (Wi — w?)?, the power is reduced by one-half. For light damping, where
W R Wy, w + wy ~ 2wy, we define the half-width of the resonant peak as
Aw = |w — wy|. The quality factor Q gives a measure of the sharpness of the
resonant peak in terms of the relative size of the resonant frequency and the width
of the curve at the half power points. That is we define Q = wy/2Aw. Using the
information given in this exercise show that Q = (1/2)(wo/7) = (1/2)wot. Thus,
a sharp resonant curve with light damping has a high Q. Find Q for a pendulum

with a period of 1s and a ring time of 10s. (Remember the factor of 27 in these .

calculations.) See Appendix A.

. The amount of damping is inversely proportional to the “ring time” t of a

pendulum or spring or electric LRC circuit. That is, the less damping the longer
the time that the system oscillates. Mathematically, t ~ 1/+. The calculations
made in the previous exercise lead to a very simple relationship between the
linewidth 2Aw and the ring time . Show that the linewidth of the resonance
curve is related to the ring time as Aw - v = 1. This relationship is similar to
the energy version of the Heisenberg uncertainty principle in quantum physics
whereby the lifetime of an unstable energy state is inversely proportional to the
uncertainty in energy.

- Eq. (3.13) has the same general form as Eq. (3.2). Make the former exactly

match the latter and thereby find the corresponding value for y. Show that the
quality factor for this electrical circuit is given by Q = wyL/R. Find Q for a
circuit that is resonant at 50 MHz, has an inductance of L = 2 p4, and resistance
of 2 Q.

. The Laplace transform technique is a powerful one for dealing with pulse sys-

tems. However, simpler techniques may be used at least during the time of the
first pulse, 0 < ¢ < 7. In the equation of motion as given, with initial conditions,
by Eq. (3.30), try a solution of the form 6(z) = ¢ sinwy? + ¢ coswg? + B. Sub-
stitute this trial solution into Eq. (3.30), determine B, and the constants ¢; and c,.
Compare your result to the first term in the comprehensive solution given by
Eq. (3.37).

65

o
o

=
n

/]

Hysteresis

o
W

Normalized torque
—
=

o
=}

0 1 2 3 4 5 6
Average angular velocity

Fig. 3.31

Slowly varying constant torque versus

angular velocity. Another example of
hysteresis.




6.1 Introduction and history

Much of the history of physics has been characterized by the effort to
understand, in great detail, increasingly smaller pieces of nature; beginning
with classical particles and waves, and progressing to molecules, atoms,
nuclei, and elementary particles. This trend became especially pronounced
in the twentieth century with the development of sophisticated experi-
mental apparatus capable of probing deeply into nature’s innermost parts.
Aside from the sense that one is closer to reality at the deeper levels of
nature, it is plausible to assume that a clear understanding of the small
pieces of nature will lead to a clear view of the large picture. The whole is
presumed equal to the sum of its parts. This approach is sometimes call
reductionism.

More recently, in certain areas of physics, the opposite methodolo gy has
proved fruitful. New structure and organization may become evident when
there is complexity, large numbers of parts, several degrees of freedom, or
even just sufficient energy to make a discrete change in the system. Indeed,
sometimes the whole is more than the sum of its parts. This creation of new
richness of behavior often occurs in the study of processes that are pushed
well beyond their equilibrium configurations. Researchers find new levels -
of organization, new complexity that does not seem to be obvious from a
consideration of the individual parts of the process (Prigogine 1980). For
example, if reactants are forced rapidly into certain chemical reactions, the
resultant products may show spatial or temporal ordering (Zhabotinskii
1991). Or convective systems with large temperature gradients may exhibit
new structural or dynamic organization of fluid motion. Even the motion
of the humble pendulum achieves a new level of complexity if it is driven
energetically at nonresonant frequencies. Why should this be? Part of the
answer lies in the fact that when systems are well beyond equilibrium, they
are often unstable, and instability can lead to new complex states. The
entire field of chaotic dynamics is an important manifestation of a new
order being achieved through instability. It is remarkable that the damped
driven pendulum is an archetypical example of chaotic dynamics. The
chaotic pendulum is therefore our next story of the pendulum.
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The chaotic pendulum

What do we mean by chaotic dynamics? What are its characteristics?
Chaotic systems are unstable deterministic systems whose trajectories are
extremely sensitive to the initial condition of the system. The French
mathematician Henri Poincaré is generally credited as being the first to
articulate the behavior of such systems. In Chapter 1, we repeated his often
quoted words that suggest how a deterministic system might behave in a
probabilistic way. Let us give a larger version of that quotation.

A very small cause that escapes our notice determines a considerable effect that we
cannot fail to see, and then we say that the effect is due to chance. If we knew exactly
the laws of nature and the situation of the universe at the initial moment, we could
predict exactly the situation of that same universe at a succeeding moment. But even
if it were the case that the natural laws had no longer any secret for us, we could still
only know the initial situation approximately. If that enable us to predict the suc-
ceeding situation with the same approximation, that is all we require, and we should
say that the phenomenon had been predicted, that it is governed by laws. But it is
not always so: it may happen that small differences in the initial conditions produce
very great ones in the final phenomena. A small error in the former will produce an
enormous error in the latter. Prediction becomes impossible, and we have the
fortuitous phenomenon. '

In this statement, Poincaré makes the distinction between two kinds of
deterministic systems. He notes that we would consider a system to be
deterministic if our prediction of its final state were accurate to approxi-
mately the same degree as our knowledge of its original state. This is our
common experience. In science education we perform laboratory exercises
in which variables are slightly uncertain. Yet we are satisfied that our
calculations and observations have proved some physical law if the results
give approximately the “right” numbers. That is, uncertainty is not amp-
lified. (Technically, we allow uncertainty to increase only linearly with time
if the process is time dependent. If the initial uncertainty is Ax, then after a
time ¢ the uncertainty has grown according to Ax = Axy\z, where ) is some
constant growth rate.) On the other hand, Poincaré suggests that with
certain systems the initial uncertainty increases quite rapidly and therefore
the final outcome looks as if it is the result of a random process or prob-
ability. Systems that behave in this latter manner are unstable. Unstable
systems have the ability to be affected by very small changes in their initial
conditions. This property is referred to as sensitivity to initial conditions
(SIC) and it is the hallmark of chaotic dynamics. (Technically, sensitivity to
initial conditions occurs when an initial uncertainty grows exponentially in
time. The uncertainty grows according to Ax = Axee™.) Of course, if a
system is deterministic and if the initial conditions are somehow known to
an infinite degree of precision, then the final state of the system is com-
pletely predictable. In practice however, no real system is completely
determined, and therefore it is the instability of the system coupled with the
initial uncertainty that leads to the possibility of widely varying outcomes.
Thus, the deterministic unstable system, the -chaotic system, gives the
appearance of being probabilistic.

! See (Poincaré 1913, p. 397).
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Introduction and history

Chaotic dynamics, or Chaos as it is popularly named, is not to be con-
fused with the primordial chaos suggested by various mythologies to exist
at the moment of creation, or with the chaos that might ensue in the wake
of a parade of small children and active dogs being turned loose in a
confined space. In fact, the term “chaos” was coined by James Yorke and
Tien-Yien Li of the dynamics group at the University of Maryland. In 1975
Liand Yorke published a paper with the title “Period Three implies Chaos”
(Li and Yorke 1975) and the name stuck. Thus, we now define chaotic
systems as deterministic systems that are unstable enough to exhibit a
probability-like nature through their sensitivity to initial conditions. While
confusion of the technical meaning with the common meaning is unfor-
tunate, chaos is now firmly entrenched in the scientific literature as the
short form for deterministic chaotic dynamics.

The history of chaos might be arbitrarily divided into two segments: first,
from the time of Poincaré’s large work on dynamics in 1892 to Edward
Lorenz’s 1963 computer simulations of unstable convection and second,
from the early 1960s to the present. This division provides an approximate
distinction between the scattered efforts of individual researchers, and the
later epoch in which chaos came to be an accepted field complete with
journals and conferences dedicated to the subject. We briefly mention a few
of these contributions from the first epoch. In his studies of celestial
motions (Peterson 1993), Poincaré realized that analysis had limitations
especially when it came to nonlinear dynamics and revived the use of
geometric methods to study stability in such systems. The American
mathematician George David Birkhoff (1884-1944) continued the geo-
metric tradition of Poincaré and helped to develop the general aspects of
the connection between unstable systems and probability. In 1932 he
published the first chaotic attractor to appear in the literature. The Russian
mathematician Aleksandr Mikhailovich Liapounov (1857-1918)? studied
the question of stability in dynamical systems and his name is now asso-
ciated with the exponent X that is the rate of exponential growth of
uncertainty. In 1944 Levinson suggested that a system with three degrees of
freedom and forcing (like a driven pendulum) could produce a chaotic
attractor. Other important pioneers include the English mathematician
Dame Mary Cartwright (1900-1998) who, in collaboration with John
Littlewood (1885-1977), analyzed the van der Pol nonlinear oscillator
during World War II (Tattersall and McMurran 2001), the Russian
mathematicians Kolmogorov, well known for his work in probability, and
Arnol’d and Moser, the last three for whom the famous KAM theory of
nonlinear systems is named. Stephen Smale produced a series of seminal
theoretical papers in the 1960s that are important for more advanced
treatment of the chaotic pendulum. On the experimental side Balthasar van
der Pol (1889-1959) used (c.1927) an LRC electrical circuit with a
nonlinear resistance to produce chaotic behavior. Georg Duffing (1861-
1944) created mechanical devices, specifically oscillators, with spring

2 The spelling “Liapounov” is slightly different from that typically used to describe the
“Liapounov” exponent.
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Fig. 6.1

Exploded view of an experimental
forced, damped pendulum, designed by
JAB and John Smith.

Fig. 6.2
Photograph of the Blackburn-Smith
pendulum.

The chaotic pendulum

constants that depended upon position, to study nonlinear vibrations
(.1908). Finally we note the work of the mathematician Chihiro Hayashi
(1911-1987) of Kyoto University in whose research group then (in 1961)
graduate student Yoshisuke Ueda (born 1936) used an analog (as opposed
to digital) computer to produce a strange attractor simulation of a non-
linear oscillator (Ueda 2000). '

From the 1960s chaotic dynamics become a much more universal and
active field. It is quite impractical to give anything like a complete history.
We just note that many of the techniques and characterizations that we will
discuss for the chaotic pendulum were developed in this period. The digital
computer became a primary tool and an initial series of computer simula-
tions of the chaotic pendulum were published by Gwinn and Westervelt
from Harvard University during the mid-1980s (Gwinn and Westervelt
1985; 1986). Other researchers also saw the possibilities in a study of the
pendulum. (See, for example (Bryant and Miles 1990).) The first physical
model of the chaotic pendulum was built by one of us (JAB) in collaboration
with John Smith of the University of Waterloo (Blackburn et al. 1989a). An
exploded view of this design and a photograph of the actual system are
shown in Figs. 6.1 and 6.2. Through the optical encoder, data giving the
angular displacement of the pendulum is sent to a computer where it can be
processed for further analysis. The fit of such data to the simple nonlinear
dynamical model described below is remarkably good (see Fig. 6.3).

Variations on the basic chaotic pendulum have also been constructed
and analyzed (See, for example, Starrett and Tagg (1995) and Shinbrot et al.
(1992).) In 1990, one of us (GLB) with coauthor J erry Gollub of Haverford
College and the University of Pennsylvania gathered together many
aspects of the behavior of the pendulum in an accessible undergraduate
text. (Baker and Gollub 1996). Many of the figures in this chapter are from
that book and further details of much of what we describe here may be
found there. ‘

Chapters 2 and 3 of this book provide a great many technical details
about the mechanics of the pendulum. In order to introduce concepts
gradually we used the linearized version of the pendulum to develop some
sense of the pendulum’s motions. The mathematics for the linearized
pendulum is solvable by straightforward analytic techniques. However, the
full nonlinear pendulum is more complex. As we discovered in Chapter 3,
even an analysis of the natural frequency of the nonlinear pendulum
becomes an involved calculation. While the linearized pendulum can be
used to illustrate much of the expected behavior of the pendulum, only the
nonlinear pendulum is capable of chaotic motion. This requirement of
nonlinearity is actually a necessary condition for chaotic motion in any
physical system. It is the nonlinearity which leads to instability and the
possibility of an abrupt transition, a bifurcation, to a new kind of motion. A
classic example of nonlinearity is the straw that breaks the camel’s back.
The camel may be loaded with increasing weights with only a slight pro-
portional buckling of its legs. Yet there may come a point where the
addition of just one small thing—a piece of stfaw~may be sufficient to




The dimensionless equation of motion

“break” the camel’s back. The camel would then be completely prostrate
and unable to carry any weight at all. Thus there is an abrupt transition
from one “state” to a completely different state. A slightly more scientific
illustration is the example of a weight suspended at the end of thin wire. As
more weight is added the wire stretches proportionately (linearly)—the
behavior predicted by Hooke’s law. But at some point a small extra weight
causes a disproportionately large stretch or even breakage in the wire.
Again, this behavior reflects a nonlinear response by the wire. Similarly,
nonlinearity allows the pendulum to exhibit corresponding transitions.
For small amplitudes of forcing the driven pendulum exhibits the usual
periodic behavior that characterizes the linearized pendulum’s motion, but
for larger amounts of forcing where nonlinearity becomes important, the
picture may change completely. The motion may become chaotic.

6.2 The dimensionless equation of motion

For a rigid compound pendulum of moment of inertia 1, we may write the
complete equation of motion for the sinusoidally driven, damped, non-
linear pendulum as

2

0  db
= ing = 1
[dtz +b o + mgdsin § = T coswyt, (6.1)

where b is the friction parameter, mgd is the critical gravitational restoring
torque, d is the distance from the pivot to the center of mass, Y is the
amplitude of the drive and wpis the angular driving frequency. The natural
angular frequency of the corresponding linearized pendulum was given
previously as wy = 1/mgd/I. The study of Eq. (6.1) can be simplified by
reducing the number of adjustable parameters. This is achieved through the
introduction of dimensionless parameters—those which have no physical
units. Toward this end, we first introduce a dimensionless time parameter,
t' =wot. By appropriate use of the chain rule and the following conversions

0 =wol/b
A =T/WEI), (6.2)
wp = wr/wp

the nondimensional equation becomes:

0 1do

— _|_ S

2 = Qdt
(For simplicity, the primes on the nondimensional time s have been
omitted.) Instead of the seven parameters of the original equation of
motion, this dimensionless equation has only three adjustable parameters,
0 the inverse of the strength of the damping, A the strength of the forcing,
and wpthe drive frequency relative to the natural frequency. Adjustments
in any of the parameters can radically change the pendulum’s motion.
Thus, the value of each member of this minimal set of parameters will
determine the dynamics.

+sinf = A coswpt. (6.3)
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Experimental data
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Fig. 6.3

Comparison of data from the
experimental pendulum with simulated
data computed from a mathematical
model of the pendulum.
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Amplitude (y,)
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Fig. 6.4
Behavior of an experimental pendulum
with fixed damping but variable
normalized forcing amplitude (v;) and
variable normalized forcing frequency
(). Filled squares represent chaotic
motion and small dots represent
periodic motion. Each point is derived
from a single experiment and there are a
total of 5250 points. Because of the time
constraints, the large shaded rectangle
was not covered experimentally, but the
behavior in that region is mainly
chaotic. The damping was fixed at
Q=4.2. See Blackburn et al. (19895).
The symbols used for the frequency and
amplitude of the forcing are different
from those found in this text.

The chaotic pendulum

The motion of the pendulum will either be periodic or chaotic. With
periodic motion the pendulum repeats its behavior at regular intervals.
In the simplest case, the period of the motion will coincide with the
period of the forcing. But there are other possibilities. Periodic motion
may also be more complex than a simple back and forth oscillation yet
still be characteristically repetitive. To say that the motion of a driven
pendulum is complex is an understatement. Much of the rest of this
chapter describes tools that are used to display and characterize the
wide variety of possible motions. Readers wishing to gain a quick
impression of the possible complexity may look ahead to Figs. 6.9-6.11
in which the motions are schematically portrayed as the parameters A,
wp, and Q, respectively, are varied. Ideally, one would like to study the
pendulum’s motion for every set of parameter values. That is, every
state of the pendulum would be represented by a point with coordinates
(4,wp, Q) and the actual motion might be indicated by the symbol
placed at the point. Such a three-dimensional diagram would be very
time consuming to produce and probably confusing to interpret.
However, a two-dimensional version for which one parameter is held
fixed is helpful. Such a diagram is shown here in Fig. 6.4. Unlike
computer simulations, this figure was created with data obtained from a
real driven pendulum.’

6.3 Geometric representations

There are a variety of ways to represent the pendulum’s motion geomet-
rically. Some of these we have already seen in other parts of the book. In
Fig. 6.5 representative periodic motions are illustrated by sketches of the
actual paths of the pendulum bob over several cycles. Situated beside the
sketch of each motion is the corresponding phase plane diagram, first
described in Chapter 2. The phase diagram or phase portrait is a graph of
angular velocity versus angle. Each phase diagram or phase portrait is
traced through many drive cycles and yet, in F ig. 6.5, the motion, although
somewhat complex, remains periodic and therefore the phase portrait is
fairly simple. As the amount of forcing increases complexity generally
increases. For example, the period of the motion is sometimes twice or even
four times that of the forcing motion. This phenomenon, known as period
doubling, can be a mechanism that leads to chaotic motion. Thus, the
understanding of chaotic motion is facilitated by using a variety of geo-
metric representations.

* A small pendulum will have a period of perhaps one-half second. In Fig. 6.4, each data
point is the result of a single experiment carried out under the following protocol: (a) the ac
drive was switched off and the pendulum was allowed to come to rest (b) the drive amplitude
and frequency were set electronically to the desired new values (c) the drive was turned on and
the pendulum motion was allowed to stabilize (d) the pendulum motion was observed over a
measurement interval using a data acquisition system. The information from this final stage
was then interpreted to form a conclusion as to the type of motion that had occured. From
start to finish, the protocol took several minutes. Obviously, more than 5000 points in the
figure would require weeks of experiments.
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Fig. 6.6

Time series for the pendulum’s angular velocity corresponding to parameters used in Fig. 6.5.

Thus we have several ways to represent the motion of the pendulum,
time series, phase portraits, Poincaré sections, and Fourier analysis—
although further elements of Fourier analysis or spectral analysis are
needed for the discussion of chaotic motion.

Chaotic motion appears when the pattern of periodic motion is broken
through instability. The motion then becomes nonrepetitive or non-
periodic. Another way of describing the motion is to say that it contains all
periodic frequencies, but that none of them last very long. More technic-
ally, it is said that chaotic motion contains an infinite number of unstable
periodic orbits. As the phase trajectory wanders around the phase space, it
comes very close to lots of periodic orbits but it is unable to maintain itself
for very long on any one of these orbits. Thus, time series seem to have no
discernible pattern or periodicity, the phase plane is very congested, and
even the Poincare section becomes complex. These features are illustrated
for the chaotic pendujum in Fig. 6.7.

The simplification caused by the strobe effect of the Poincaré section
now becomes apparent. Whereas the phase portrait is quite congested, the
Poincaré section has an appearance which lends itself to characterization.
We note first that (for a dissipative system) the Poincaré section is confined
to a particular complex region in space. No matter what the initial con-
ditions the points will eventually all lie in this region which has a special
characteristic appearance. Thus, the creation of the Poincaré section
requires that the system be allowed to run until any initial aberrations are
no longer evident, and then data are saved for the diagram. In essence the
pendulum’s motion is attracted to the set of points that form the Poincaré
section. The Poincaré section and the corresponding phase portrait are

——d
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Fig. 6.6
Time series for the pendulum’s angular velocity corresponding to parameters used in Fig.6.5.

Thus we have several ways to represent the motion of the pendulum,
time series, phase portraits, Poincaré sections, and Fourier analysis—
although further elements of Fourier analysis or spectral analysis are
needed for the discussion of chaotic motion.

Chaotic motion appears when the pattern of periodic motion is broken

for very long on any one of these orbits. Thus, time series seem to have no
discernible pattern or periodicity, the phase plane is very congested, and
even the Poincare section becomes complex. These features are illustrated
for the chaotic pendulum in Fig. 6.7,

The simplification caused by the strobe effect of the Poincaré section
now becomes apparent. Whereas the phase portrait is quite congested, the




Fig. 6.7

Three geometric representations of the chaotic pendulum; (a) Time series of the angular velocity,

section.

said to be strange attractors. For nonchaotic motions, the attracting phase
Space set for periodic motion was referred to as an artractor. The word
“strange” is related to the particular
motion. For chaotic Systems in general and the chaotic pendulum in
particular, the attractor is a Jfractal,
Therefore, an attractor that is a fractal is called a “strange attractor”.
Obviously chaotic motion is complex. This complexity suggests that
nonlinear equations of motion are
by analytic methods. The equation
no analytic solution. Solutions are
computers to do repetitive calculations,
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(b) Phase plane diagram, and (c) Poincaré

geometry of the attractor for chaotic

about which more will be said later.,

difficult and usually impossible to solve
for the nonlinear driven pendulum has
generated by numerical methods using
It is not surprising that the bulk of

the work in chaotic dynamics has occurred after the computer revolution.
Edward Lorenz of MIT is generally credited with being the first to observe
chaotic time series on g computer. Lorenz recounted the story of this bit of
serendipity for a television program on chaos. During observation of the
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computer solution of his model equations for convective air flow in 1963
he had occasion to restart his computer. In doing this, he failed to put in the
precise numbers used to start a previous computer simulation and the
computer gave him quite a different result for the system trajectory. This
was the first recorded instance of sensitivity to initial conditions, and led tq
the actualization of Poincaré’s oft quoted prediction for the unstable
behavior of a set of deterministic differential equations.

The computer is now the primary tool in the theoretical study of chaotic
systems. In an ideal application of the scientific method experimental
apparatus should be constructed whose behavior approximates that of the
computer simulation. The experimental apparatus may then be used to test
the theoretical model. But while chaotic systems are believed to be ubi-
quitous in nature, they are difficult to construct as controlled systems suit-
able for laboratory experimentation. Fortunately, the chaotic pendulum is
one of the few exceptions to this chronic difficulty and, as we have seen, can
be realized experimentally.* Thus, aside from the pendulum and a few other
experimental systems, the computer is essential for the bulk of the research
in chaotic dynamics. We therefore ask, “Given the instability and sensitivity
of chaotic systems, does the computer accurately represent the motion of
chaotic systems?”. The answer is both “yes” and “no.” Because of sensitivity
to initial conditions and the finite precision of computer calculations, the
actual trajectory of a system may, after a relatively short time not be the
same as that which would be provided by an “infinitely” precise calculation
using infinitesimally small time steps for the calculation. But fortunately
chaotic attractors possess a characteristic that mitigates the deleterious effect
of the approximate nature of the computer simulation. Figure 6.7(b) shows
that chaotic trajectories are densely packed in the sense that their orbits in
phase space are close together. Therefore the computer tends to produce a
phase trajectory that “shadows” a “true” trajectory for some time. Then, as
the computer orbit drifts away from the true orbit, it comes close to another
“true” trajectory and shadows the true motion again and so forth (Grebogi
et al. 1990; Fryska and Zohdy 1992). In this way, the computer does not
necessarily provide a true trajectory but rather a series of shadowings of true
trajectories. On the other hand, all true trajectories that are being shadowed
by the computer calculations lie on the “true” strange attractor and con-
sequently the shadow trajectories also lie on or extremely close to the strange
attractor. Hence the computer does provide a true Poincaré section or phase
portrait if data is taken over a long time. Therefore we accept the computer
as a primary tool, partly from necessity and partly because it really does give
true results in many circumstances.

6.3.2  Spectral analysis

But let us return to geometric representations of the pendulum’s motion.
What about spectral analysis? Since chaotic motion is not periodic, the

* While the Blackburn/Smith pendulum seems to have been the first experimental chaotic
pendulum, there are other configurations. See, for example, (DeSerio 2003; Peters 1999).
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Geometric representations

Fourier decomposition into components as described in Chapter 2 no
longer holds. There is no fundamental frequency of motion on which to
base the Fourier series expansion. However, there is a generalization of the
process used to obtain Fourier series that works for nonperiodic functions.
This process requires a mathematical transformation known as the Fourier
transform. In developing this transform, we start with the Fourier series of
Eq. (2.11)

n=0c0 ) T/ wy ]
)= 3" a,6™" where g, ;"—0 fDe™iqr (6.4)
n=—oo0 T/ wo

in complex form. If the time series is not periodic as is the case with chaotic
motion, then the nonperiodic motion can be thought of as part of a single
wave whose period is infinitely long. The fundamental period of a possible
Fourier series now becomes infinitely long or, conversely, the fundamenta]
frequency becomes infinitely short. Creation of the F ourier transform then
becomes a limit process for several of the variables as shown by the fol-
lowing transformations:

T= o0
Hwy = w,

where w is a continuos variable, and

@ == a(w)dw (6.5)

=00 0
D)= Z @, becomes AH = / a(w) dwe™ and

H=—00 S
/W ) 00 )
a, = =0 J(®)e™™ " dt becomes a(w)dw = d_w / JSe ™" gr,
2 it 2 J_ o

From these transformations the amplitude, a(w), of each of the uncount-
ably infinite number of frequency components is found using the Fourier
transform, given by the equation

a(w) =2—17; /_ ADe™ dp. (6.6)

While the graph of the spectral components, a,, of a Fourier series isaset of
discrete lines at harmonics of the fundamental frequency wy, a graph of the
Fourier transform a(w), or frequency density, is a continuous function of
the continuum of frequencies present in nonperiodic motion. Similarly, the
original function S(?) is now expressed in terms of an integral with each
member of the continuum of frequencies being weighted by the frequency
density according to the formula

A= /_ ” a(w)e™ du, 6.7)

The Fourier transform of the time series for the chaotic pendulum shown
in Fig. 6.7(a) is illustrated in Fig. 6.8,
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Fig. 6.8
Fourier spectrum for a chaotic
pendulum. Aside from the strong
component at the forcing frequency, the
spectrum power diminishes inversely
with increasing frequency.

The chaotic pendulum
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It seems fairly clear that the idea for the F ourier transform stems from
Fourier’s 1811 paper (Kline 1972) although other mathematicians were
working on similar ideas. But for the effective implementation of the
transform in chaotic dynamics we rely on a modern approach. Toward this
end we note that our development of the Fourier transform implies the use
of a continuous function, S(#). But the computer generates time series as a
noncontinuous, discrete set of points and therefore chaotic times series
generated by computers will be Fourier transformed, again by numerical
integration. Furthermore, the discretization of the points requires that
the appropriate Fourier transform is slightly modified and renamed as the
Discrete Fourier transform (DFT). The process is essentially that of the
continuous transform but the many integrations done in the transform
process are performed by discrete numerical integration. (We-also note in
passing that the discrete nature of the sampling in the time series can cause
subtle problems, but that is another story.) At any rate, for much of
spectral analysis up until the mid-1960s the discrete transform was
standard procedure. But in 1964, J. W. Culley and J. W. Tukey, at the
urging of R. L. Garwin at the IBM research center, created a better method
or “algorithm”.®> One way to assess an algorithm is by the number of
computational steps required. A “better” algorithm therefore has fewer
steps and computes faster. Thus was born the Fast Fourier Transform
(FFT). This ingenious technique took advantage of certain symmetry
properties of trigonometric functions at thejr points of valuation. The
increase in speed over the discrete transform method is substantial. If the
time series contains NV points then the DFT requires a number of calcu-
lations that is of the order of N?, whereas the FFT computation requires a
number of calculations on the order of NV log; V. For N'= 1000 points the
efficiency is increased by a factor of more than 100 (Press et al. 1986). The
spectrum shown in Fig. 6.8 was generated using the FFT algorithm. Let us
now return to the application of spectral analysis to the chaotic pendulum.

*> The FFT seems to have been discovered independently at different times, possibly as
early as 1942, and implemented on hand calculators.
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Periodic motions in time typically yield a small number of discretely
spaced frequency components. Furthermore, even for periodic motions with
very sharp corners that yield spectra with a large number of components or
harmonics, the components are still spaced apart by a frequency interval
equal to the fundamental frequency. But, as shown in Fig. 6.8, chaotic
motion gives rise to an infinite number of densely packed frequency com-
ponents. This observation reinforces the statement made earlier that chaotic
motion contains an infinite number of unstable periodic orbits. The spec-
trum also shows a very strong component at the frequency of the pendulum
forcing, together with a couple of harmonics, that characterize the forcing
motion. By ignoring these components we see that, for the bulk of the
components, the amplitude of the components is approximately propor-
tional to the inverse of the frequency, 1/w. This behavior points to much of
the pendulum’s motion as being in (unstable) periodic orbits of very long
periods and is consistent with the notion that one route to chaos is through
increasing complexity of the periodic orbits which, in turn, implies
increasingly longer periodic orbits. A spectrum that is inversely proportional
to frequency is also characteristic of a certain type of electrical noise, called
“1/f” noise. This noise is above that which is inherent in an electrical system
due to simple thermal agitation. “1/f” noise can be caused, for example, by
fluctuations in the electrical resistance in a circuit. These fluctuations are
quite prominent at low frequencies. In vacuum tubes—now largely a
museum artifact—current was transmitted between the cathode and anode,
The electron emission from the cathode is not strictly uniform and again,
this generated noise whose spectrum exhibits 1/f behavior. The analogy
between 1/f'noise and a 1/w spectrum for chaotic time series is important.
The processes that generate electrical 1 /f noise are random. On the other
hand, the governing rules for chaotic systems are deterministic. Therefore we
once again witness a manifestation of Poincaré’s statement that determin-
istic processes can sometimes appear to be probabilistic; that is, according to
spectral analysis, the chaotic pendulum appears to behave randomly.

6.3.3  Bifurcation diagrams

Previously described geometric representations of chaotic motion all
picture the development of a particular pendulum being driven with a
particular forcing strength and frequency. We can also provide a more
global picture, in the sense that the motion of a variety of pendulums can be
represented on a single diagram. That is, we observe some aspect of the
motion of the pendulum for a particular configuration, but then change
slightly the configuration and repeat the process. This is done many times
for incremental changes in one of the pendulum’s parameters, (4, wp, Q).
In this way, the motion is observed over a range of pendulum configura-
tions. The bifurcation diagram shown in Fig. 6.9 is a typical example.
The vertical axis coordinate is the pendulum’s angular velocity df/dt as
determined at a single point during a drive cycle. It is essentially the vertical
coordinate of the Poincaré section. The horizontal axis coordinate is one
of the parameters of the system. In this example, it is the strength of the
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Fig. 6.9
Bifurcation diagram. A plot of the
angular velocity, taken many times at a
fixed point in the forcing cycle, versus the
forcing amplitude.

The chaotic pendulum
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forcing, A. In essence, each vertical segment of the diagram requires data
equivalent to that of a Poincaré section and therefore the construction of the
entire diagram is computationally intensive as it requires the creation of a
Poincaré section for each value of 4. The advantage of this sort of pre-
sentation is that it provides a summary of the possible types of motion over
some range of the system parameter. Points where the pendulum’s motion
changes to a new kind of motion are called bifurcations and since this dia-
gram is characterized by many such points, it is called a bifurcation diagram.
At the left side, where the forcing amplitude is small, the motion has a period
equal to the forcing period. Further to the right on the diagram the motion,
still periodic, becomes more complex through successive period doublings.
After a few such doublings the strobed angular velocity takes on many
values and the motion is now chaotic. However, the motion does not remain
uniformly chaotic but reverts to windows of periodicity throughout the range
of forcing amplitudes. We see that there is often a certain sameness to the
progression via period doubling from periodic motion to chaotic motion
over the range of amplitudes. By looking at increasingly smaller ranges over
which the system parameter is varied we magnify the bifurcation diagram
and observe another phenomenon; namely, the number of periodic windows
increases as the bifurcation diagrams are increasingly magnified. This
property of increasing complexity under magnification is also found in phase
portraits and Poincaré sections.

Similar bifurcation diagrams may also be created through variation of
each of the other two parameters, wp, the forcing frequency, and 0, the
friction parameter. Examples of these are shown in Figs. 6.10 and 6.11.

The appearance of these figures is similar to that of Fig. 6.9. We noted
earlier that, although impossible to draw, one might try to imagine a
parameter space with coordinates (4, Q, wp) in which the various types of
motion could be exhibited and thereby gain a comprehensive overview of
the pendulum’s behavior. Such a diagram would somehow contain in one
figure all the information found in the two-dimensional representations of
Figs. 6.9-6.11. Thus one could identify parameter sets of periodic (stable)
and chaotic behavior (unstable).
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6.4 Characterization of chaos
6.4.1 Fractals

The geometric representation of chaotic motion by, for example, the
strange attractor of the Poincaré section, has an almost artistic quality.
This representation is also a fruitful subject for mathematical analysis as
an example of fractal geometry. As we will see, the quantitative
description of the Poincaré section fractal is intimately related to the
pendulum’s dynamics. But let us first give some idea of the general
properties of a fractal. The term “fractal” was coined by the mathem-
atician Benoit Mandelbrot (Mandelbrot 1977). It comes from the Latin
adjective “fractus” which means “broken”. If we imagine the coastline of,
say, Norway, and look at that country’s map at ever increasing magni-
fication, we would see that there is no characteristic length that can be
applied. Any apparently straight lines are, upon further magnification,
seen to break into smaller line segments. Hence any characteristic length
is “broken”. Fractals then are roughly defined as geometric sets that have

Fig. 6.10
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A bifurcation diagram using the forcing
frequency as the independent parameter.

Fig. 6.11

Bifurcation diagram with the damping Q

as the independent parameter.
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Calculation of the fractal dimension for
the Cantor set. (Reprinted from Baker
and Gollub (1996, p. 113), with the
permission of Cambridge University
Press.)
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no characteristic length. Fractals also exhibit a property known as self-
similarity. For example, viewed at one level the coast of Norway appears
to be fairly jagged. If a portion of that coast is now magnified to the same
size as the original view, it will have an appearance similar to that of the
original stretch of coastline. This sameness under observation at
increasing magnifications is called self-similarity. In summary, fractals
typically have (a) no characteristic length and (b) some degree of
self-similarity.

Yet long before the term “fracta]” was invented, several mathema-

ticians studied geometric configurations that later came to be known as.

fractals. Some of the mathematicians that are associated with these
fractal precursors are the German mathematicians Georg Cantor
(1845-1918) and David Hilbert (1862-1943) who proposed space-filling
curves, the Italian Mathematician Guiseppe Peano (1858-1932), Helge
von Koch, the Swedish mathematician who, in 1904, published the
Koch snowflake, the Polish mathematician Waclaw Sierpinski (1882-
1969) who published the Sterpinski gasket fractal in 1916, the French
mathematician Gaston Julia (1893-1978) who gave us the family of
fractals known as .Julig sets, and the German mathematician Felix
Hausdorff (1868-1942) with whom we associate the idea of dimension
of a fractal. (During World War IT Hausdorff and his wife, both
Jewish, committed suicide in anticipation that they were within a week
of being sent to a concentration camp.) Mandelbrot, born in 1924,
entered the scene much later. Mandelbrot’s uncle recommended Julia’s
1918 paper to him around 1945. For various reasons Mandlebrot did
not like the paper and he found his own path to Julia’s work in about
1977. With the aid of the computer Mandelbrot greatly expanded
Julia’s work and showed the potential for .creating beautiful pictures.
The Cantor set (1883) is simple but popular, and its construction is
indicated in Fig. 6.12.

The set is constructed by consecutively removing the middle third out of
each line segment. After an infinite number of steps there are an infinite
number of points but the pieces do not form a connected line. Clearly the
Cantor set is self-similar—same appearance at varying magnifications—
and has no characteristic length. The Poincaré section for the pendulum
also has these properties in some measure. Figure 6.13 shows the Poincaré
section under increasing magnification, and there is a sense that further
structure is revealed with increasing magnification. This is especially the
case in looking “across” the Poincaré sections.

We are quite used to the idea that objects have integer dimensionality—
either one, two, or three dimensions. A single point or perhaps a finite
collection of points have zero dimension. Lines are one-dimensional and
consist of an infinite set of closely spaced points. Yet, one of the distin-
guishing features of most fractals is that they have noninteger values of
dimension. This notion seems strange; but we see that while the Cantor set
consists of an infinite number of points it has no parts that can be con-
sidered to be line segments. By some sort of intuitive interpolation, the

{
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Increasing magnifications of the Poincaré section of the chaotic pendulum that reveals the fractal structure of thea

Baker and Gollub ( 1996, 56,57 pp.), with the permission of Cambridge University Press.)

Cantor set should have dimension somewhere between zero and one. To
find the precise number requires a methodology for the calculation of
dimension.

Perhaps surprisingly, there are several definitions of dimension. We
will use a method that gives the capacity dimension dc, introduced by
Kolmogorov in 1959 (Kolmogorov 1959). As shown in Fig. 6.14, a line
may be “covered” by a set of one-dimensional “boxes” of ever decreasing
size, ¢. If the length of the line is L then the number of boxes N(e) is clearly
equal to L(1/e). Similarly the two-dimensional square in Fig. 6.14 can be
covered by N(e) = L*(1/€)* boxes. For a three-dimensional cube the
€xponent would be equal to 3. Therefore we define dimension as the
eXponent d in the expression

N(e) = LY 1 /¢)%or, taking logs,
Je log N(e)

T logLF log(1/€)"

In the limit as N gets very large and ¢ becomes very small the fixed term

log L becomes negligible and the expression for dimension is simplified to

_ 1. log N(e)
*= Diog /0

(6.8)

(6.9)

This expression can be used to calculate the dimension, the fractal
dimension, of the Cantor setas shown in Fig. 6.12. The result is found to be
(log 2/1og 3)=0.63093, a number between zero (for a point) and one (for
a line).
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Fig. 6.15
A portion of the Poincaré section with
some representative covering boxes.
(Reprinted from Baker and Gollub
(1996, p. 115), with the permission of
Cambridge University Press.)
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This procedure (or a similar one) may be used to calculate the fractal
dimension for the Poincaré section of the chaotic pendulum. Figure 6.15
shows a set of boxes covering the Poincaré section.® Of course the process
must now be done on a computer and is subject to some limitations. A close
examination of the Poincaré section shows that its points do not cover an
area, but are really a (possibly infinite) set of closely spaced lines. Therefore
the Poincaré section is more than a line and less than an area. We expect its
dimension to lie between one and two. Again, the methodology is indicated
in Fig. 6.14.

A set of square boxes of side 1/e cover the Poincaré section. The log-
arithm of the number of boxes N(e) is plotted against log (1/¢) and the slope
gives the fractal’s dimension. For the parameter set 4=1.5, Q=4,
wp = 0.66 the fractal dimension is about 1.3. The capacity or box counting
dimension is the simplest measure of dimension. In this sort of work it is
more common to use another, related but somewhat less intuitive measure
of dimension, called the correlation dimension. For the details of this
process as applied to the pendulum, see, for example, Baker and Gollub
(1996).

The fact that the geometry of the Poincaré section has unusual fractal
properties is itself an interesting and surprising feature. Even more striking
is the fact that the fractal dimension is intimately and beautifully related to
the dynamics of the pendulum through a measure of the pendulum’s
sensitivity to initial conditions. This measure is known as the Lyapunov
exponent.

6.4.2

At the beginning of this chapter we introduced the notion of sensitivity to
initial conditions and defined it in terms of the exponential separation in

Lyapunov exponents

© There exist many variations on the definition of dimension. For simple fractals there is a
high degree of equivalency among them. But in some cases the more general definitions
provide a higher degree of specificity of the fractal. For a concise summary see the table in
Takayasu’s book on page 150.
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time of identical systems whose initial conditions are separated by an
amount Ax,. That is, the time dependence of this separation is given by
Ax(1) = Axpe. The parameter A is called the Lyapunov exponent. By
following the change in separation of an initial pair of coordinates one can
determine the Lyapunov exponent. If the parameter is negative or zero
then the separation either diminishes or stays constant. But if ) is positive
then SIC holds and the system is chaotic.

For a one-dimensional system with the single variable x(¢), the inter-
pretation of )\ is relatively straightforward. However, the pendulum is a
three-dimensional system, with angle, angular velocity, and time (or forcing
phase) as the three variables. We need to think about a three-dimensional
phase space and imagine following the growth or decay of a ball of coordi-
nates (points) representing many identical pendulums in states that
momentarily differ only slightly from each other. The evolution of this ball
of coordinates is complicated. It may grow in some directions and shrink in
other directions—becoming a kind of twisting and shape-changing foot-
ball. In this process, the directions of growth and shrinkage are not constant
but vary as the system evolves over the phase space in which the attractor is
imbedded. If the initial volume of the ballis A Vo thenits volume a short time
later is AV(1) = AV(0)e+%+%) where the three \’s—Lyapunoy expo-
nents—give the expansion or contraction rates in the three “directions” that
define the football. (The time over which we follow these many points needs
to be short because the attractor is limited in size and the evolving ball will
fold back on itself for longer times. SIC is exhibited between foldings.)

For the chaotic pendulum, time, and thus the forcing phase, increasesata
constant rate, and therefore there is no spread of the ball in the phase
direction. The Lyapunov exponent corresponding to the forcing phase or
time coordinate is, say A, = 0. This leaves the exponents for contraction and
expansion. The directions of expansion and contraction change as the ball
moves along its central phase space orbit and therefore, unlike the orbit
direction, no constant direction can be associated with contraction or
expansion of the ball. Expansion implies the existence of a positive Lya-
punovexponent, a necessary condition for SIC. Let us call this exponent ;.
What about contraction of the phase ball of the damped driven pendulum?
If millions of pendulums were started each at one of the millions of possible
starting points in the entire phase space, these points would tend to collect
on the attractor, and therefore there must be overall shrinkage of phase
volume ball. Thus there will be a negative Lyapunov exponent, say \;.
Shrinkage of the phase volume requires, not only that there be the negative
Lyapunov exponent, but that it must be sufficiently negative so that

AL+ A+ A3 <0. (6.10)

A schematic diagram of this shrinkage process is shown in Fig. 6.16.
Algorithms for computation of the Lyapunov exponents are somewhat
complex and beyond the needs of this book. (See, for example, Wolf et al.
(1985) and Eckmann etal. (1986).) A computer program for the computation
of the exponents for the pendulum is given in Baker and Gollub (1996).
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Fig. 6.16
Schematic of the process of shrinkage
and stretch of an ensemble (ball) of
phase coordinates for the chaotic
pendulum,
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Fig. 6.17

Evolution of an initial volume of phase
coordinates in phase space. (Reprinted
from Baker and Gollub (1996, p. 13),
with the permission of Cambridge
University Press.)
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What is the connection between Lyapunov exponents and the dynamics of
the pendulum? The Lyapunov exponents measure the evolution of the phase
space ball. Therefore we require some sort of analysis of how a phase volume
changes in the general case. Consider the general three-dimensional phase
space of Fig. 6.17 where the coordinates are the generic triplet of dynamical
coordinates (x;,x;,x3). The figure shows a rectangular box of sides

Ly =15 — X1a, Ly =X — X2, L3=x3p~ X3, (6.11)

and the product of these sides gives the volume. Let us calculate the time rate
of change of the volume. Using the product rule for differentiation we obtain
av . . : ; . .
7= LoLy(X1p — %1a) + L1L3(%2p — X20) + L1Lo(¥3p — X30),  (6.12)
where x means dx/dt. Now the dynamical coordinates each have a rate, x;,
that depends on the other coordinates and the various system parameters.
In general these dynamical rates may be expressed as

dx

7[1=F1(x1,x2,x3)

dx

— = B, 3, 3%5) (613)
t

dx

7; = F3(x1, X2, X3)

and are simply the equations of motion for the system expressed as a set of
first order differential equations.

Therefore the rate of change of phase volume may be written in terms of
the dynamics, as represented by the functions (F,, Fs, F3), as

av

= Ly L3[F(x18, X2a, X34) — F1(X1a, X24, X34))]

+ 2 similar terms. ‘ (6.14)
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For small evolution times with small change in phase volume we use a
linear approximation by expanding the first term in a Taylor series as

aFl (xlaa X2a, X3a)

%, (x15 — x12)  (6.15)

Fi(X1, %20, X30) = F(X10, X2, X34) +
and similarly with the other terms. This linearization means that our final
result for the rate of change of volume is only valid for small periods of the
system’s evolution. Nevertheless, by averaging the changes over many
small steps we obtain an average rate of shrinkage of the phase volume.
Combining the above equations gives the rate

av OF; OF, OF;3

i g P Mgy = Ly Eiy— 2 (5, = PiiBp %, =

P 2la s (1p — x14) + L1 Ly o (%25 = X20) + L1 Ly = (36 — X34),

(6.16)

which may be more compactly expressed as a logarithmic derivative
1dV
——=V_.F. 6.17
V de V-F ©.17)

Putting this expression together with the definition of the Lyapunov
exponents leads to

AM+XM+X=V-F. (6.18)

Amazingly, the dynamics are now connected to the phase volume
shrinkage.

Let us apply this general formulation to the pendulum. We simply
transform the equation of motion for the pendulum into the form of a
dynamical system—the collection of rate equations for each dynamical
variable. We begin with the pendulum’s equation of motion, Eq. (6.3)

d29+ ! d9+sin 0 = A cos wpt

a2 " Qdr - wot:
Rather than using just the single dependent variable we define new
variables, w for angular velocity, and ¢ for phase. These new variables,
combined with Eq. (6.3) lead to the dynamical system

dw 1 .

T —aw—sm9+Acos¢
do
= - 1
=Y (6.19)
¢ _

= Wp.
dr P

In terms of Eq. (6.17) the logarithmic volume rate is — 1/Q=X+ X+ ;.
This equation makes the connection between the pendulum dynamics—in
this case the rate of dissipation—and the phase space volume evolution as
characterized by the Lyapunov exponents. Now that we know how phase
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space volumes evolve, we will make one more connection between geo-
metry and dynamics. That is, we connect the fractal dimension of the
attractor with the Lyapunov exponents.

6.4.3 Dynamics, Lyapunov exponents, and fractal dimension

The relationship between Lyapunov exponents and fractal dimension was
posited by Kaplan and Yorke in 1979 (Kaplan and Yorke 1979). In the
following paragraphs, we provide an informal argument to make the
conjecture plausible. Consider the schematic diagram, as shown in
Fig. 6.18, of the simultaneous stretching and shrinking of a set of points |
that fills a small portion of a three-dimensional phase space. Like the

A pendulum this system is dissipative and therefore the volume occupied by
et ,’:/’: the set shrinks in time.
Ve L Let the evolution of the unit volume be described by V(¢) =

eQi+Xat) where, as in Fig. 6.16, the stretching rate is described by the
. positive Lyapunov exponent A; > 0, A, may be positive or zero, and
;Icg};e?r;:icillustrating VR - the shrinking rate‘is describ;d by the negative Lyapunov e).(ponent
shrinkage of a small volume (ensemble) A; < 0. Note that in the labeling the exponents decrease numerically as
of phase points. the index increases. Eq. (6.9) defines the fractal dimension in terms of
N(e), the number of boxes needed to cover the evolved volume, and «(?),
the time dependent length of one side of an elemental box. From the
figure we see that

e e

S R —

V(t) e(}x1+)\2+/\3)t

Bl i — S -2x)e 1
G = e = 6.20) |

N(e(®) =

and therefore
_log(N(e(®)) M+ —2M)t - 24 AL+ A
L™ Tog(1/e(d) “hat Pl

Dimension that is calculated in this way is sometimes called the Lyapunov
dimension and in certain simple cases it will equal the box counting
dimension. A discussion of the conditions under which the Kaplan-Yorke
conjecture is true has been given by Grassberger and Procaccia (1983).

(The Kaplan-Yorke conjecture may also be used for the higher dimen-
sional phase space of more complex systems. In these cases the formula
becomes

(6.21)

)\1+>\2+"'+)\j

A1 ’
where the ); are ordered from largest to smallest with ); being the smallest
nonnegative exponent.)

Let us put all the pieces together. We are now thinking of the pendulum
as a dynamical system that may be represented in a three-dimensional
phase space with coordinates (w, 6, ¢). The full attractor for the pendulum
in this space is shown in Fig. 6.19. Side and end views are shown in
Figs. 6.20 and 6.21. :

dr=j+ (6.22)
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The attractor is now embedded in three-dimensional space but is not
space filling. Therefore we expect its dimension to be less than three. In this
particular case it is computed to be about 2.4. The time coordinate ¢ is a
measure of the phase ¢ of the forcin g function. Furthermore, motion along
the time (phase) axis is represented by the second Lyapunov exponent \,.
We noted that since time grows linearly and there is no change in phase
volume due to time, then Az is zero. The connections between Lyapunov
exponents, fractal dimension, and dynamics, may now be summarized in
two equations:

dL=2+ﬁ% and —1/Q =X + h + As. (6.23)
3

Baker and Gollub ( 1996) computed the various pertinent quantities for
several values of the damping factor, Q. The results of that work
are summarized in Table 6.1. Remember that A2 = 0. (We previously

Fig. 6.19

Full three-dimensional attractor for the
chaotic pendulum. The angle coordinate
6 is constrained by periodic boundary
conditions at %7

Fig. 6.20
Side view of the 3D attractor showing a
time series similar to that of Fig 6.7(a).

Angular velocity
S )

|
N

Angle

Fig. 6.21
End-on view of the 3D attractor
(looking down the time axis) showing a
phase plane diagram similar to that of
Fig. 6.7(b)
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Table 6.1 Lyapunov exponents and dimension for several values of damping

0 A X 30 -1/Q dy =243
i=]

4.0 0.16 —0.42 —-0.26 -0.25 2.38

3.7 0.16 —-0.43 -0.27 -0.27 2.37

3.0 0.11 —0.44 -0.33 -0.33 2.25

2.8 0.09 —0.45 —0.36 —0.36 22

2.0 0.12 -0.58 —-0.46 -0.5 2.2

calculated dimension using the box counting technique for the two-
dimensional attractor——see Fig. 6.14—and found that d. =~ 1.4. For the
three-dimensional attractor the corresponding dimension would be
d. =~ 2.4, a value that is similar to those shown in Table 6. 1)

As Q increases the damping diminishes and the pendulum has freer
motion in both real space and in phase space. Therefore the attractor is
more open and fuller, and its dimension increases with less damping. We
have seen that Lyapunov exponents, fractal dimension, and pendulum
dynamics are all intimately connected. While our focus is on the pendulum
it is useful to note that other nonlinear dynamical systems exhibit these
same SIC properties and lead to fractal geometries that are susceptible
to similar analyses. On a more speculative note, we might ask whether
fractal geometry leads to SIC. Does the appearance of fractal geometry—
such as in tree leaves, spiral galaxies, and coastlines—suggest a mechanism
of nonlinear chaotic dynamics as the functional source of this geometry?
The relationship of the pendulum’s damping to geometry may indicate
the operation of similar dissipative mechanisms in these other diverse
phenomena.,

However, we return to the pendulum and look at further connections
between geometric properties and dynamics.

6.4.4  Information and prediction

The notion of information is related to the thermodynamic concept of
entropy. Entropy is the measure of disorder or uncertainty in a closed
system. Information, or more precisely missing information, is also a
measure of uncertainty in a system. For example, suppose there is a system
which may be in one of two states, A and B. If one knows that the system is
in state B, then there is no missing information. On the other hand, if the
state of the system is completely unknown, and one must assume that A or
B is equally likely, then we say that there is 1 bit of missing information.
Intermediate between these two possibilities might be a condition where we
know that A is twice as likely as B. Then the associated probabilities are
P4 = 2/3 and pp = 1/3. In this case the missing information is equal to
0.918 bits. Again, if p, = 9/10and pz = 1/10 then the missing information
is equal to 0.465. All of these results may be calculated from the formula

I=—(p4log,ps+ pplog, pp). (6.24)

,
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The use of the base 2 for the logarithm is typical of information theory.
However, in nonlinear dynamics the base e is more commonly used. We
follow that practice here and define the missing information as

1) == () lnpi(s). (6.25)
i=1

For a dynamical system, the probabilities for the system’s configuration
may change in time. Consider three cases. If the system is deterministic and
nonchaotic, then if the system is known initially, it will be known for all
time. For example, if the System'’s starting configuration is confined to a
small number of states, W then its starting information is In . As time
goes on the state of the system is exactly predictable and therefore the time
evolution of the small number of initial states is known precisely. Thus the
entropy starts at a constant value and remains equal to that value, and
therefore

I(¢) = I(0) = constant. (6.26)

The other limiting case is the random system. Again the system can be
started in a specific state. But after some transient epoch, the system will
randomly travel through all possible states. After these initial moments,
the system’s specific configuration always remains unknown. Therefore the
missing information becomes and remains infinite for all time:

1(2) = I(0) + oo. (6.27)

The intermediate deterministic case is the chaotic system. Asin the previous
deterministic case, the initial state is known and the initial information is
constant. This condition may be represented by a set of points in phase
space all being located in a small region. However, SIC now causes a
gradual increase in uncertainty. One can imagine the points in phase space
beginning to spread and a measure of this spread is the system’s positive
Lyapunov exponent. Thus the spreading into other states after a time 7 is
proportional to e, where A+ Is the positive Lyapunov exponent. (More
generally the increase in possible (but unspecified) states would be pro-
portional to e®™ where the sum is taken over all positive Lyapunov
exponents.) If the “size” in phase space of the initial state, or equivalently
the number of states, is taken as e then after time ¢ the number of states is
M. Assuming all states are equally probable we see that the information
develops in time according to

(1) =In(1/€) + A, 1. (6.28)

In general, it has been shown for many chaotic systems that the
information change is linear (Atmanspacher and Scheingraber 1987)

K1) =1y + Kz, (6.29)

where X is called the Kolmogorov entropy. (Note that the Kolmogorov
entropy is really a rate of change of entropy.) Under many circumstances
(Grassberger and Procaccia 1983) it is reasonable to supposethat K ~ >~ )\,
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Fig. 6.22

Two angular velocity time series (one
solid, one dotted) with a difference
between their initial angles of one part
in 10%,

The chaotic pendulum
;

and therefore knowledge of the positive Lyapunov exponents can give some
estimate of the time variation of the information content of a system. If
K = O then the system is deterministic and nonchaotic, if K = constant, then
the system is deterministic and chaotic, and if K=o, then the system is
random. For the chaotic pendulum, one typical set of pendulum parameters
gave A, ~ 0.16, thus providing some measure of the growth of uncertainty.

Growth in uncertainty implies a limitation on the ability to predict the
future behavior of the chaotic pendulum. Such uncertainty is very familiar
to all those who follow weather reports. In such reports we often see the
initial uncertainty in the knowledge of present weather conditions ampli-
fied into a much larger uncertainty in what seems to be a relatively short
time. While we probably do not know the values of the positive Lyapunov
exponents for weather systems, we can make some predictions for simple
systems like the pendulum.

Calculation of Lyapunov exponents for growth and decay of a phase
volume are made over times that are short compared to the time required to
traverse the phase space. Once the ball of initial conditions has stretched to
a size comparable to that of the attractor, the ball typically folds over, and
the stretching and shrinking process begins again. Thus the prediction time
T is approximately the time taken for a set of points in small volume of
phase space to diverge to the boundaries of the phase space of size, say L. In
one dimension, L ~ Ae*7 where A is the initial linear dimension of the
phase volume. Therefore the prediction time, T is given by

_In(L/A)  In(L/A)
X K

We can obtain some idea of this prediction time for the pendulum.
Suppose that the initial linear dimension, or uncertainty in the dynamical
coordinates, is about one, one hundred millionth of the attractor size. With
A+ =0.16 we obtain a prediction time of about 115 in the dimensionless
time units used in Eq. (6.3), which is about 12 forcing cycles. This
prediction is tested by the simulation in Fig. 6.22 where two pendulums are
started with the above, very small, difference in one of their initial coord-
inates. The figure shows that after about a dozen forcing cycles the two
time series start to come apart, as predicted.

T (6.30)

Angular velocity
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One goal of science is to develop models of reality that will predict the
future. Some theories seem to work amazingly well. For example, astron-
omers can predict the motions of the planets hundreds of years into the
future. On the other hand meteorologists seem unable to achieve anything
more than approximate short term weather forecasts and Very approximate
long term forecasts. Similarly, accurate long term prediction of the future
of chaotic systemsis not possible. But within this constraint, scientists have
built up a series of methods in their efforts to enhance the prediction of
chaotic systems. There are two aspects to this problem. In our treatment of
prediction of the pendulum’s motion we have used the model provided by
the deterministic differential equation. The accuracy of any prediction then
depends strongly on the degree of specificity of the initial state, asindicated
by Eq. (6.30). Such specificity can theoretically go well beyond that which is
possible from experimental data. A more realistic approach is to consider
the problem of prediction from a set of experimental data. This data may be
such that there is no corresponding mathematical model or, if there is such
a model, it may be approximate at best. This latter problem has led to a
greatdeal of interesting work which is really beyond the scope of this book.
(The interested reader is referred to the paper by Abarbenal et al. (1990)
and the book by Weigend and Gershenfeld (1994).) For the pendulum, two
of the simpler methods are discussed in Baker and Gollub (1996) and
applied to data from the Blackburn pendulum. Ingenious as some of these
methods are, the fundamental limitation described by Eq. (6.30) is still the
best that can be done. Thus, despite the fact that chaotic systems are
deterministic as to the causes of their motions, we have yet another con-
firmation that they are unpredictable.

6.4.5 Inverting chaos

briefly describe this “inverse” problem.

A real pendulum, such as the design of Blackburn and Smith, pro-
duces data which roughly approximates simulated data from a compu-
terized solution of the model differential equation. Figure 6.3 shows
simulated and experimental data for the pendulum. In order to obtain
experimental data, the physical characteristics of the real pendulum are
first calibrated according to the parameters (O, 4, wp) used in the model
€quation. Then the settings are adjusted so that the parameters of the
real pendulum are as close as possible to those used in the model
€quation, (Q, 4, wp). The real pendulum and the simulated pendulum
then produce data sets for comparison. Minor discrepancies between the
two pictures may be due to a variety of sources: perhaps the model
€quation does not exactly represent the dynamics of a real pendulum, or
perhaps there are effects that result from flaws in the manufacture of the
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Table 6.2 Range of possible experi-
mental parameters

2<ax< 10
60 < 8 < 100
80 < v < 200
0<é<I2
0<op<2nrw

The chaotic pendulum

pendulum, or perhaps there are limitations on the quality of the parts.
Nevertheless, the agreement between the simple nonlinear simulation
and the data produced by a complex mechanical and electronic pendu-
lum is quite good.

Now let us suppose that one does not have a calibration of the real
pendulum. Is there some way that the parameters of the model pendulum,
given by the differential equation, could be determined? This question is
part of a larger question in science. Can experimental data help to deter-
mine a theoretical model of some phenomenon? In chaotic dynamics, much
effort has gone into such work. Sometimes the equations of motion are not
known and one is starting only with the data (Brown et al. 1994). In other
cases, information about the model is sufficient to suggest equations of
motion but the values of the parameters of the equation set are not known
(Parlitz 1996). This latter situation is the case for the driven pendulum.
A good set of equations of motion is known. Thus one can test an inversion
method, a method to obtain the equation parameters, by using data sets
from a real chaotic pendulum. The statistical method of least squares fitting
is the mathematical basis for the study of the pendulum inversion problem
(Baker et al. 1996).

As we will see, the set of three parameters (Q, A, wp) is not sufficient for
this work and therefore we use a modified dimensionless equation,

W' = —ow — Bsin @ + ysin (61 + ¢). 6.31)

with five unknown parameters (c, 3, v, 8, ¢). The two extra unknown
parameters account for our lack of knowledge (a) of the pendulum’s nat-
ural frequency and (b) of the initial phase of the pendulum. In the test of
this inversion process, only the range of possible experimental values is
known, as shown in Table 6.2

The real pendulum produces a set of datd points {w;, 6;} each data pair
being separated by a time of Az = 0.007s. The “cxperimental” angular
acceleration wj is calculated by a standard finite difference approximation
defined as

1 ~wiy + 8w — 8w +wiy
wiExpt - 12A¢
Least squares fitting is a technique whereby one minimizes the sum of all

the differences between the “experimental” value of Wigxpe a0d the value of
w; using the right side of Eq. (6.31). That is, the sum

(6.32)

% 2
S= Z [w:EXpt — (—ow; — Bsinb; + ysin (6t; + qS))} (6.33)
i=1
is minimized with respect to each parameter by setting
as oS
'a—a = O, % = 0, etc. (634)

Differentiation with respect to the set (o 8 ) leads to linear equations in
these parameters which may be solved to give complex but closed form
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expressions for these parameters in terms of the data sets {w, 8;}. On the
other hand, equations involving the parameters § and ¢ are nonlinear and it is
not possible to find a closed form expression for these parameters. Therefore
the process of determining all five parameters requires several steps.

As a first step the experimental time series is subjected to a fast Fourier
transformation. The transform gives the spectrum of all frequencies

ponent and therefore a first estimate of its value is provided by the spec-
trum. The other problematic parameter ¢, the phase of the time series is not
especially sensitive to values of @, B, and +. Using the newly acquired
estimate of § and almost any reasonable values of (, 3, 7) it is possible to
look for a minimum in Sasa function of the phase ¢. The estimates of § and
¢ are then used together with the linear equations for (@, B,v) to determine
a first estimate for all five parameters. Now all parameter values can be
further refined by iteration of the process of minimizing S as a function of
each parameter. Figure 6.23 shows minimization graphs for § and o.

This procedure was followed by the authors in an effort to find para-
meters that would best fit rea] experimental data. The final results from the
successive iterations are given in Table 6.3. The experimental values were
known only to one of usg (JAB) while the analysis was being carried out by
the other (GLB).

The agreement between the two parameter sets is quite good although
not perfect. In a previous section we discussed the Lyapunov exponents
and fractal dimension of an attractor. Data from the real pendulum and
data from a simulated pendulum with the “fitted” parameters both provide
attactors. The corresponding Lyapunov €xponents and dimensions of the
attractors should match if the simulation accurately models the experi-
ment. Table 6.4 provides a comparison of these geometric “invariants,”
and the agreement is very good. How well the fitting process works depends
upon the number of points and upon the amount of noise on the data.
Various tests involving both factors were conducted and, within certain

597 598
8 (rads™)

Table 6.3 Comparison of experi-
mental and fitted parameters

-_
Parameter Exp. value  Fitted (from
exp. data)
afrad s™Y) 224401 2.12
Blrad s™%)  80.640.1 76.1
rad s7%) 12146 117
S(rad s™")  5.98+0.02  5.96
¢(rad) unknown 1.05
-

Table6.4 Comparison of experimental
and simulated values of dimension and
positive Lyapunov exponent

-

Exp. data  Simulated
data

-_— O

Dimension 224015 2.140.1

Positive Lyap.  0.9+0.1 0.9+0.1

Exponent

-—




150

The chaotic pendulum

limits, the fitting process is found to fairly robust against noise and small
data sets. Thus the combination of Least Squares, FFT, and iteration led to
a successful “inversion process.” The data successfully “predicted” the
model equations—or at least the parameter values.

The chaotic pendulum exhibits a variety of unusual and surprising
phenomena, including beautiful strange attractors and felicitous connec-
tions between geometry and dynamics. Further effects appear when pen-
dulums are coupled together as in the next chapter.

6.5 Exercises

1. Use the transformations of Eq. (6.2) to convert Eq. (6.1) to Eq. (6.3).

2. Periodic motion often changes to chaotic motion because of increased forcing of
the dynamical system. In many cases, subharmonics of the original frequency of
the forcing or even the natural frequency of the system become more prominent.
With increased forcing, more and more subharmonics are created until the
system destabilizes and becomes chaotic. The musical scale can also provide
examples of subharmonics. For example, period doubling of middle C whose
frequency is 256 Hz (scientific scale) leads to the first subharmonic of 128 Hz that
is the C one octave below middle C. For 256/3 Hz there is period tripling and the
musical note is the “F” below the lower C. Calculate the frequencies of all the
subharmonics down to 256/16. Refer to the Handbook of Physics and Chemistry
to determine which of the subharmonics correspond to real musical notes. Use
the “scientific” or “just” scale.

3. Find the Fourier transform a(w) of the function

D=0, t<-b
=c¢, -b<t<bh
=0, t>5.

Sketch the graphs of (1) and a(w). What is the width Az of the graph of f{£)?
Define the width Aw of a(w) as the distance between the two zeros on either side
of the line, w =0. Calculate Aw and find the product of the two widths. Note that
the product is independent of either separate width. This observation is generally
true. This product illustrates the mathematical basis of the uncertainty principle
of quantum physics.

4. Fixed points in phase space are important in the study of dynamics. These are
points in phase space where the time derivatives of the variables vanish. Suppose
we write the dimensionless equation for the damped, but not driven, pendulum as

db 1, .
E——EG—sm@
a9
dt

and consider the phase portrait which, for this system is given in Chapter 3 as
Fig. 3.21. From that diagram or a consideration of the equations find the fixed
points. Note that there are two kinds of points. One kind corresponds to the
pendulum bob being at the top of its motion and therefore unstable, and the
other kind corresponds to the pendulum bob being at the bottom of its motion
and therefore stable. We noted in Chapter 3 that this latter point is called an
attractor and the former point is called a saddle point.

S. A Bifurcation diagram shows that as the amplitude of the driving force for the

pendulum is increased, more and more subharmonics occur. The transition

s




e A BSOS TN RO N

10.

Exercises

points are known as bifurcation points. While location of these bifurcation
points are often impossible to predict, the following simple (nonpendulum)
model illustrates their basic characteristics, Consider the curve in phase space

6 =f6) = 6% — h.

(a) Graph f{6) in phase space. (b) For 4> 0 what are the roots of 6)? Note that
these roots are the fixed points of the equation. (c) The behavior of f{6) near the
fixed points (roots) may be approximated by a linear Taylor series. For the ith
root 6, this approximation is JO0) = (6, - 6,). Using your answers to (b) for
01 and 6,, write the two linearized equations for /76). (d) Now let us examine
the stability of the fixed points. First, near a fixed point, we define a new
variable n = 0 — 6; and look at whether this small deviation from the fixed
point increases with time. If the deviation 7 does increase then the fixed point is
unstable. If the deviation decreases then the fixed point is stable. Thus
dn/dt = d(0 - 6))/dt = 5y~ f' (6:)n. The sign of f'(¢;) determines whether the
system will regress toward or away from the fixed point. Find and solve the
linearized differential equations for 7 near each of the fixed points. Determine
the stability of each fixed point. (¢) Now consider the changes in the model
curve f(6) and, particularly, in the fixed points as the parameter 4 tends toward
zero. The parabola gradually moves upward, its roots (the fixed points)
approach each other and the origin along the 0 axis. As the roots coalesce when
h=0, the fixed points disappear and the system has undergone a distinct
change or bifurcation. Therefore 4 =0 specifies a bifurcation point (See, for
example, Strogatz, (1994))

. Calculate the fractal dimension of a Cantor set where the middle one-quarter is

removed rather than the middle third. Follow the process shown in the text.
Prove that the length of the set is zero.

Construct a two-dimensional Cantor set as follows. Draw a square, one unit on
a side. Inside the square remove a square of sides 1/3 from the center of the
original square. The result is a square that contains 8 squares of size 1 /3 x1/3.
Now, in each of those remaining squares, remove from the center a square of
size 1/9 x 1/3, and so on. The look will be somewhat like Swiss cheese. Sketch a
few iterations of this process. (a) Find the dimension by following the limiting
process in the text. Note that ¢ is the length of the side of the appropriate
covering squares. (b) Prove that the area of the resulting set is zero.

- The first computer generated attractor is due to the pioneering work of Lorenz

(1963) who modeled the atmosphere according to the equations

X = —ox+oy
y=—xz4+rx—y
Z=xy— bz,

where o, r, and b are positive constants. Calculate the logarithmic rate of
change of the phase volume, (1/V)dv/dt using the formula that connects
Lyapunov exponents, volume change, and the equations of motion. If the
result is negative then the system is dissipative and has an attractor. The
attractor in question is shaped somewhat like a butterfly and is ubiquitous in
the popular literature of chaos.

. Consider a physical system that is capable of being in one of the states. The

missing information for the system is given by I(f) = ~ oo pi(On py(2). Prove
that if all states are equally likely then /(z) = In .

Suppose a physical system can exist in one of two states whose probabilities are
Pr=eXandp, =1 ek Atr= 0, what are the values of the probabilities?
At t = co, what are the values of the probabilities? What are the values of the
missing information at these two times? Write the missing information as a
function of time. Using a plotting program, sketch the function. For what value
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11.

12.

13.

14.

of ¢is the missing information a maximum? Prove this result in two ways: (a) by
using calculus, and (b) using the result of problem 9.
If the positive Lyapunov exponent for a chaotic system is Ay = 0.1, how big
would an initial relative uncertainty of one billionth grow to be in a time of 200
(dimensionless) units?
Suppose a dissipative system has Lyapunov exponents of A\; = 0.10, A\, = 0.0,
and A3 = —0.13. (a) Calculate the relative change in phase volume,
(Vi — Vr)/ V1, after a time T. (b) Using the Kaplan—Yorke conjecture, calculate
the dimension of the system’s attractor.
“Inverting” chaos in the case of the Lorenz equations (given in exercise 8) is
relatively straightforward since all equations for the unknown parameters, o, r,
and b are readily solvable. Use the least squares method described in the text to
develop equations for the parameters in terms of sums involving the data sets
[xi, i, zi] and [%;, 3;, 2)). Show that o = (3 X;p; — 3 %) /(%2 — 23 xipit
Zyg), r=(Cxyi+ Y kz+ Y xiy)/ Y x2,and b= (— 3 ziz + 3 xipiz)/
z%,
The Kaplan-Yorke conjecture may also be demonstrated using the time
evolution of aninitial sphere of radius r as it becomes an ellipsoid (see Fig. 6.16)
with semi-axes, a = reM’, b = re*!, ¢ = re™’, where A\; > 0, = 0,3 < 0, as
with the pendulum. Start from Eq. (6.20) and let the elemental volume be a
sphere of volume 4¢3 /3. Then follow the corresponding derivation in the text
to arrive at the Kaplan—Yorke conjecture. (Hint: the volume of an ellipsoid is
V = 4mabc/3.



